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Abstract

This paper describes algorithms for efficiently calculating certain rolling time series
operators for unevenly spaced data. In particular, we show how to calculate simple moving
averages (SMAs), exponential moving averages (EMAs), and related operators in linear
time with respect to the number of observations in a time series. An implementation of
the algorithms is provided in the programming language C and as an R package.1

1 Introduction

There exists an extensive body of literature on analyzing equally-spaced time series data, see
Tong (1990), Brockwell and Davis (1991), Hamilton (1994), Fan and Yao (2003), Lütkepohl
(2010), Box et al. (2015), and Brockwell and Davis (2016). As a consequence, efficient al-
gorithms have been developed for many computational questions, and implementations are
available for software environments such as Fortran, Matlab, and R. Many of the underly-
ing algorithms were developed at a time when limitations in computing resources favored an
analysis of equally spaced data (and the use of linear Gaussian models), because in this case
efficient linear algebra routines can be used.

As a result, fewer methods exists specifically for analyzing and processing unevenly-spaced
(also called unequally- or irregularly-spaced) time series data, even though such data nat-
urally occurs in many industrial and scientific domains, such as astronomy, biology, (pa-
leo)climatology, economics, finance, geology, and network traffic analysis.

For such data, Müller (1991) and Dacorogna et al. (2001) recommend, due to the compu-
tational simplicity, to use exponential moving averages (EMAs) as the main building block of
time series operators. In particular, Müller (1991) argues that the sequential computation of
EMAs “is more efficient than the computation of any differently weighted MA”. This paper
shows that many other time series operators can in fact be calculated just as efficiently.

The main focus of this paper are rolling time series operators, such as moving averages,
that allow to extract a certain piece of local information about a time series (typically within

∗Comments are welcome at andreas@eckner.com
1See github.com/andreas50/utsAlgorithms and github.com/andreas50/utsOperators, respectively.
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a rolling time window of a fixed length τ > 0). The generic structure for most such operators
is as follows:

for each time window of length tau with end point equal to an observation time {

do some calculation on

the observation values and times in the current rolling window

}
Generic Rolling Time Series Operator

If the calculation within each window runs in linear time with respect to the number of
observations in the said window, then the total time for applying such a rolling time series
operator is proportional to (i) the length of the time series, times (ii) the average number of
observations in each time window (or equivalently, the average observation density times the
window length τ). However, in many cases it is possible to devise a much more efficient algo-
rithm with execution time proportional only to the length of the time series and independent
of the window length τ . This paper presents such algorithms for SMAs, EMAs, and various
other rolling time series operators.

1.1 Framework

This section provides a brief introduction to unevenly spaced time series and the basic structure
of rolling time series operators for such objects. For a more detailed exposition see Eckner
(2017).

We use the notation ((tn, Xn) : 1 ≤ n ≤ N(X)) or (Xtn : 1 ≤ n ≤ N(X)) to denote an un-
evenly spaced time series X with strictly-increasing observation times T (X) = (t1, . . . , tN(X))
and observation values V (X) = (X1, . . . , XN(X)), where N(X) denotes the length of the time
series.

For a time point t ∈ R, X[t]last denotes the most recent (i.e. last) observation value of
X at or before time t, X[t]next denotes the next available observation value of X at or after
time t, while X[t]linear denotes the linearly interpolated value of X at time t. We call these
quantities the sampled value of X at time t with last-point, next-point, and linear interpolation,
respectively. Sampled values before the first observation time, t1, are taken to be equal to the
first observation value, Xt1 . While potentially not appropriate for some applications, this
convention avoids the treatment of a multitude of special cases in the exposition below.2

The algorithms in this paper have as input (i) an array values containing the observation
values, (ii) an array times containing the observation times, and (iii) a parameter τ describing
the temporal horizon of a time series operator, such as the length of a moving average window.
The output is an array out of same length as the input arrays. Indices of arrays start at one.
For integers n ≤ m, n:m denotes the array of numbers [n, n + 1, . . . ,m − 1,m]. For brevity
of the presentation, although not in the accompanying implementation, we ignore variable
declarations, memory allocation, and special cases for time series of length zero or one.

Many of the algorithms below use a half-open rolling time window of the form (t − τ, t]
to keep track of observations relevant to the calculation of a time series operator at a time
t ∈ T (X). Specifically, the variable right denotes the index corresponding to the right edge of

2A software implementation might instead use a special symbol to denote a value that is not available. For
example, R uses the constant NA, which propagates through all steps of an analysis, because the result of a
calculation involving NAs is also NA.
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the rolling time window, while the variable left denotes the index of the left-most observation
inside the rolling time window. In particular,

t− τ < times[left] ≤ times[right] = t.

With this notation, the generic algorithm for rolling time series operators becomes:

left = 1;

for (right in 1:N(X)) {

// Shrink window on the left end

while (times[left] <= times[right] - tau))

left = left + 1;

// Calculate output for current rolling window

out[right] = do_some_calculation(values[left:right], times[left:right]);

}
Generic Algorithm for Rolling Time Series Operators

Here, values[left:right] and times[left:right] denote the array of observation values
and times, respectively, in the current time window.

In many cases of interest, the function do some calculation will run in linear time with
respect to the number of observations inside the current time window. The algorithms in this
paper improve upon the efficiency of this generic algorithm by reusing results from the previous
time window to determine the output value of the current time window.

Remark 1. In some cases, it is desirable to store every single observation value within the
rolling time window in a self-balancing binary search tree, such as an AVL tree, see Knuth
(1998). Such a data structure allows searches, insertions, and deletions to be carried out in
logarithmic time. However, the additional complexity involved in the implementation pays off
only for very large datasets. For time series of moderate length, a simpler algorithm is often
just as efficient.

2 Rolling Summary Statistics

The simplest possible rolling operators calculate a univariate summary statistic of the obser-
vation values inside a rolling time window, without regard to the spacing of observations.

2.1 Rolling Sum, Average, Product, and Number of Observations

The rolling average can be used for summarizing the average value of a time series over a
certain time horizon, for example, for the purpose of smoothing noisy observations. It can be
calculated efficiently by keeping track of (i) the number and (ii) the sum of observation values
in a time window of length τ that moves forward in time. Both values are updated whenever
a new observation enters or leaves the time window. The pseudocode of the algorithm is as
follows:
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left = 1; roll_sum = 0;

for (right in 1:N(X)) {

// Expand window on right end

roll_sum = roll_sum + values[right];

// Shrink window on left end

while (times[left] <= times[right] - tau) {

roll_sum = roll_sum - values[left];

left = left + 1;

}

// Save average value for current time window

out[right] = roll_sum / (right - left + 1);

}
Rolling Average

This algorithm can be trivially modified to calculate the total number and sum of observation
values in a rolling time window of length τ > 0.

left = 1;

for (right in 1:N(X)) {

while (times[left] <= times[right] - tau)

left = left + 1;

out[right] = right - left + 1;

}
Rolling Number of Observations

left = 1; roll_sum = 0;

for (right in 1:N(X)) {

roll_sum = roll_sum + values[right];

while (times[left] <= times[right] - tau) {

roll_sum = roll_sum - values[left];

left = left + 1;

}

out[right] = roll_sum;

}
Rolling Sum

Note that for a fixed time window width τ > 0, by construction, the rolling average of a
time series equals the rolling sum divided by the rolling number of observations of the same
time series.

Finally, the rolling product can be calculated in a similar manner, but care must be taken
to avoid divisions by zero when a zero observation value leaves the rolling time window.

2.2 Rolling Maximum and Minimum

Assume given a function max index(array, start, end) that returns the index of the largest
element in an array between and including the indices start and end. The rolling maximum
in a time window of length τ > 0 can be calculated as follows:
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left = 1; max_pos = 1;

for (right in 1:N(X)) {

// Expand interval on right end

if (values[right] >= values[max_pos])

max_pos = right;

// Shrink interval on left end

while (times[left] <= times[right] - tau)

left++;

// Recalculate position of maximum if old maximum dropped out

if (max_pos < left)

max_pos = max_index(values, left, right);

// Save maximum for current time window

out[right] = values[max_pos];

}
Rolling Maximum

The rolling minimum in a time window of length τ > 0 can be calculated in a similar
manner.

Remark 2. An alternative algorithm could use a self-balancing binary search tree to keep track
of the observation values inside the rolling time window, see Remark 1. The minimum and
maximum element of such a data structure can be extracted in logarithmic time, which gives a
better worst-case performance than the algorithm above.3

3 Simple Moving Averages

Like the rolling average, simple moving averages (SMAs) can be used for summarizing the
average value of a time series over a certain time horizon.

Definition 3.1. For an unevenly spaced time series X, we define three versions of the simple
moving average (SMA) of length τ > 0. For t ∈ T (X),

(i) SMAlast(X, τ)t = 1
τ

∫ τ
0 X[t− s]last ds,

(ii) SMAnext(X, τ)t = 1
τ

∫ τ
0 X[t− s]next ds,

(iii) SMAlinear(X, τ)t = 1
τ

∫ τ
0 X[t− s]linear ds,

where in all cases the observation times of the input and output time series are identical.

Notice that the rolling average from Section 2.1 gives the same weight to each observation
inside the rolling time window. The SMAs, on the other hand, implicitly assign different
weights to different observations, depending on the spacing of observation times. However,
for equally spaced time series data with rolling window length τ an integer multiple of the
observation time spacing, the simple moving average SMAnext is identical to the rolling average,
see Eckner (2017).

3The worst case is attained for a strictly decreasing time series, because in this case the position of maximum
value, max pos, has to be calculated from scratch each time an observation drops out of the time window.
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When to use which operator?

A rolling average is ideal for analyzing discrete events; for example, to calculate the average
number of casualties per deadly car accident over the past twelve months, or to determine the
average number of IBM common shares traded on the NYSE per executed order during the
past 30 minutes.

On the other hand, the SMAlast can be used to analyze discrete observation values; for
example, to calculate the average FED funds target rate4 over the past three years. In such
a case, it is desirable to weight each observation value by the amount of time it remained
unchanged.

The SMAnext has a similar purpose for time-reversed processes and, as mentioned above,
under certain circumstances coincides with the rolling average for equally spaced time series.

Finally, the SMAlinear can be used to estimate the rolling average value of a discretely-
observed continuous-time stochastic processes with observation times that are independent of
the observation values, see Eckner (2017).

3.1 SMAlast and SMAnext

The simple moving average SMAlast can be efficiently calculated in a manner similar to the
rolling average. However, now the spacing of observations leaving and entering the rolling time
window needs to be taken into account. Figure 1 visualizes two key steps in the algorithm,
which is as follows:

left = 1; roll_area = left_area = values[1] * tau; out[1] = values[1];

for (right in 2:N(X)) {

// Expand interval on right end

roll_area = roll_area + values[right-1] * (times[right] - times[right-1]);

// Remove truncated area on left end

roll_area = roll_area - left_area;

// Shrink interval on left end

t_left_new = times[right] - tau;

while (times[left] <= t_left_new) {

roll_area = roll_area - values[left] * (times[left+1] - times[left]);

left = left + 1;

}

// Add truncated area on left end

left_area = values[max(1, left-1)] * (times[left] - t_left_new)

roll_area = roll_area + left_area;

// Save SMA value for current time window

out[right] = roll_area / tau;

}
SMAlast

Note that the value of left area, calculated towards the end of the loop, is reused in the next
iteration close to the top of the loop.

4The FED funds target rate is the desired interest rate (by the Federal Reserve) at which depository in-
stitutions (such as a savings bank) lend balances held at the Federal Reserve to other depository institutions
overnight. See www.federalreserve.gov/fomc/fundsrate.htm for details.
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X[left−1] * (times[left] − t_left_new)

X[right−1] * (times[right] − times[right−1])

times[left−1] t_left_new times[left] times[right−1] times[right]

Figure 1: Areas involved in the calculation of the simple moving average SMAlast(X, τ). The x’s

mark the observations of the time series, and the step function is the corresponding sample path with last-point

sampling scheme. The shaded area on the right-hand side has to be added to the variable roll area in order

to expand the rolling time window to the right. Depending on the position in the loop of the algorithm, the

shaded area on the left-hand side has to be either added or subtracted from the variable roll area.

The algorithm for calculating the simple moving average SMAnext is almost identical and
therefore not shown here, but provided in the implementation.

3.2 SMAlinear

The simple moving average SMAlinear can be calculated like the SMAlast, except that areas
entering and leaving the rolling time window are now trapezoids instead of rectangles, see
Figure 2. To this end, we define a helper function that calculates the area of the trapezoid
with coordinates of the corners (x2, 0), (x2, y2), (x3, 0), and (x3, y3), where y2 is obtained by
linear interpolation of (x1, y1) and (x3, y3) evaluated at x2.
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trapezoid = function(x1, x2, x3, y1, y3) {

// Degenerate cases

if (x2 == x3 or x2 < x1)

return (x3 - x2) * y1;

w = (x3 - x2) / (x3 - x1);

y2 = y1 * w + y3 * (1 - w);

return (x3 - x2) * (y2 + y3) / 2;

}
SMAlinear helper function - Trapezoid Area

The if statement treats the two special cases of (i) a trapezoid with zero area, and (ii) the
first observation has not yet left the rolling time window. The pseudo-code for the main part
of the algorithm is as follows:

Trapezoid

(times[right] − times[right−1]) *
(X[right−1] + X[right])/2

times[left−1] t_left_new times[left] times[right−1] times[right]

Figure 2: Areas involved in the calculation of the simple moving average SMAlinear(X, τ). The x’s

mark the observations of the time series, and the piecewise-linear function is the corresponding sample path

with linear interpolation. The shaded area on the right-hand side has to be added to the variable roll area in

order to expand the rolling time window to the right. Depending on the position in the loop of the algorithm,

the shaded area on the left-hand side has to be either added or subtracted from the variable roll area.
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left = 1; roll_area = left_area = values[1] * tau; out[1] = values[1];

for (right in 2:N(X)) {

// Expand interval on right end

roll_area = roll_area + (values[right-1] + values[right])/2 *

(times[right] - times[right-1]);

// Remove truncated area on left end

roll_area = roll_area - left_area;

// Shrink interval on left end

t_left_new = times[right] - tau;

while (times[left] <= t_left_new) {

roll_area = roll_area - (values[left] + values[left+1]) / 2 *

(times[left+1] - times[left]);

left = left + 1;

}

// Add truncated area on left end

left_area = trapezoid(times[max(1, left-1)], t_left_new, times[left],

values[max(1, left-1)], values[left]);

roll_area = roll_area + left_area;

// Save SMA value for current time window

out[right] = roll_area / tau;

}
SMAlinear

As before, the value of left area, calculated towards the end of the loop, is reused in the next
iteration close to the top of the loop.

4 Exponential Moving Averages

Like SMAs, exponential moving averages (EMAs) can be used for summarizing the average
value of a time series over a certain time horizon, except that more weight is given to more
recent observations.

Definition 4.1. For an unevenly spaced time series X, we define three versions of the expo-
nential moving average (EMA) of length τ > 0. For t ∈ T (X),

(i) EMAlast(X, τ)t = 1
τ

∫∞
0 X[t− s]laste

−s/τ ds,

(ii) EMAnext(X, τ)t = 1
τ

∫∞
0 X[t− s]nexte

−s/τ ds,

(iii) EMAlinear(X, τ)t = 1
τ

∫∞
0 X[t− s]lineare

−s/τ ds,

where in all cases the observation times of the input and output time series are identical.

For reasons that will become clear shortly, we discuss the EMAnext first.

4.1 EMAnext

It is easy to show that Definition 4.1 (ii) is equivalent to
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out[1] = values[1];

for (j in 2:N(X)) {

w = exp(-(times[j] - times[j-1]) / tau);

out[j] = out[j-1] * w + values[j] * (1-w);

}
EMAnext

This algorithm is identical to the algorithm commonly used for equally spaced time series.
Therefore, applying the usual EMA for equally spaced data to unevenly spaced data implicitly
applies next-point interpolation to the time series, something that, depending on the applica-
tion, may not be desirable.

4.2 EMAlast

It is easy to show that Definition 4.1 (i) is equivalent to

EMAlast(X, τ)t =

{
Xt1 if t = t1,

(1− e−∆tn/τ )Xtn−1 + e−∆tn/τ EMAlast(X, τ)tn−1 if t = tn > t1

for t ∈ T (X), which is the EMAnext of the original time series with lagged observation values.
Hence, the EMAlast(X, τ) can be calculated recursively as well:

out[1] = values[1];

for (j in 2:N(X)) {

w = exp(-(times[j] - times[j-1]) / tau);

out[j] = out[j-1] * w + values[j-1] * (1-w);

}
EMAlast

4.3 EMAlinear

The EMAlinear can also be calculated recursively, see Müller (1991).

out[1] = values[1];

for (j in 2:N(X)) {

tmp = (times[j] - times[j-1]) / tau;

w = exp(-tmp);

w2 = (1 - w) / tmp;

out[j] = out[j-1] * w + values[j] * (1 - w2) + values[j-1] * (w2 - w);

}
EMAlinear

5 Two-Sided, Non-Causal Rolling Operators

The rolling time series operators discussed so far are all causal, that is, the output value at
each time point depends only on past observations. However, for some applications, such as the
smoothing of noisy data, it is desirable to use a two-sided rolling time window. The resulting
time series operator is non-causal, because the output can also depend on future observations.

The half-open rolling time window is now of the form (t − τ, t + η], where τ > 0 (η ≥ 0)
is the width of the rolling time window before (after) the current output time. Again, the
variable left denotes the index of the left-most observation inside the rolling time window,
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while the variable right denotes the index of to the right-most observation inside of the rolling
time window. In particular,

t− τ < times[left] ≤ times[right] ≤ t+ η.

With this notation, the generic algorithm for two-sided rolling time series operators is:

left = 1; right = 1;

for (pos in 1:N(X)) {

// Expand window on the right end

while (right < N(X)) && (times[right + 1] <= times[pos] + eta)

right = right + 1;

// Shrink window on the left end

while (times[left] <= times[pos] - tau))

left = left + 1;

// Calculate output for current rolling window

out[pos] = do_some_calculation(values[left:right], times[left:right]);

}
Generic Algorithm for Two-Sided Rolling Time Series Operators

Note that a separate loop index (different from right) is now needed.
It is relatively straightforward to adapt the algorithms in Section 2, 3, and 2.2 to allow a

two-sided rolling time window, which has been done in the accompanying implementation.

6 More General Operators

This section briefly discusses how the above operators can be combined and generalized.

6.1 Convolution Operators

Many of the operators discussed so far are examples of convolution operators, see Gilles Zum-
bach (2001), Dacorogna et al. (2001), and Eckner (2017). For the purpose of our discussion,
the following simplified definition suffices:

Definition 6.1. For a time series X and function f on R× R+ satisfying suitable integrability
conditions, the convolution of X with f with last-point sampling, X ∗last f , is a time series
with

T (X ∗last f) = T (X),

(X ∗last f)t =

∫ ∞
0

f(X[t− s]last, s) ds, t ∈ T (X ∗last f),

while the convolution of X with f with linear interpolation, X ∗linear f , is a time series with

T (X ∗linear f) = T (X),

(X ∗linear f)t =

∫ ∞
0

f(X[t− s]linear, s) ds, t ∈ T (X ∗linear f).
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It is easy to see that the SMAs in Section 3 are convolution operators with f(x, s) =
1
τ 1{0≤s≤τ}, while the EMAs in Section 4 are convolution operators with f(x, s) = 1

τ e
−s/τ . The

SMA and EMA algorithms can be generalized to calculate convolutions with functions of the
form

f(x, s) = g(x)
1

τ
1{0≤s≤τ},

where g is a real-valued function. For example, g(x) = xk for k ∈ N allows to calculate the
rolling k-th time series moment, denoted by m(X, τ, k), where k = 1 is a simple moving aver-
age. In the case of linear interpolation, the algorithm typically requires numerical integration,
because the shaded areas in Figure 2 are irregular. Alternatively, one can first apply the func-
tion g to the observation values of X, and then apply the simple moving average SMAlast or
SMAlinear to the transformed time series.

6.2 Combining Operators

Time series operators that are built using the operators above can also be efficiently calculated.
For example, the rolling variance of a time series over a time horizon τ can be calculated as

σ2(X, τ) = SMAlast(X
2, τ)− (SMAlast(X, τ))2

= m(X, τ, 2)−m(X, τ, 1)2,

where Xk for a time series X is short-hand notation for taking the k-th moment of the indi-
vidual time series observations.

Similarly, the average true range (ATR), a popular robust measure of price volatility, can
be calculated as

ATR(X, ρ, τ) = SMAlast(range(X, ρ), τ)

= SMAlast(roll max(X, ρ), τ)− SMAlast(roll min(X, ρ), τ),

where ρ > 0 is the range horizon, and τ > ρ is the smoothing horizon.
Finally, convolutions X ∗last f and X ∗linear f with densities of the form f(x, s) = g(x)h(s),

where g : R→ R and h : R+ → R are reasonably smooth functions, can be approximated by a
linear combination of SMAs of the transformed time series g(X), where

T (g(X)) = T (X),

(g(X))t = g(Xt), t ∈ T (g(X)).

7 Numeric Stability

The efficiency of many algorithms above rests on reusing a result or intermediate quantity
from the previous time window to determine the output value for the current time window.
For example, roll sum for calculating the rolling average and sum, and roll area for various
SMAs. For long time series, the large number of additions and subtractions in updating these
quantities can lead to the accumulation of round-off errors due to the finite precision of floating
point numbers. See Higham (1993) for a comparison of summation algorithms for floating point
numbers.
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Moreover, if the rolling time window contains a very large number of observations or if
the observation values cover several orders of magnitude, then the intermediate quantity can
be several magnitudes larger than typical observation values. Under these conditions, round-
off errors that are the relatively small at the scale of the intermediate quantity translate to
much larger relative errors at the scale of typical observation values, a phenomenon commonly
referred to as catastrophic cancellation.

The Kahan (1965) summation algorithm (also known as compensated summation) can be
used to bound the size of the accumulated round-off error in the summation of a sequence of
floating point numbers. To incorporate this method into the algorithms above, we define the
following helper function to add together the two variables sum and addend:

compensated_addition = function(sum, addend, comp) {

addend = addend - comp;

sum_new = sum + addend;

comp = (sum_new - sum) - addend;

return (sum_new, comp)

}
Compensated Addition

Here, comp is a compensation for the accumulated numeric error from previous calls of this
function. Note that the function returns a 2-tuple of numbers; the updated sum, and the
updated accumulated numeric error.

Using this helper function, the rolling average algorithm from Section 2.1 becomes:5

left = 1; roll_sum = 0; comp = 0;

for (right in 1:N(X)) {

// Expand window on the right

(roll_sum, comp) = compensated_addition(roll_sum, values[right], comp)

// Shrink window on the left

while (times[left] <= times[right] - tau) {

(roll_sum, comp) = compensated_addition(roll_sum, -values[left], comp)

left = left + 1;

}

// Save average value for current time window

out[right] = roll_sum / (right - left + 1);

}
Numerically Stable Rolling Average

The other algorithms can be modified in a similar manner to make them numerically stable.

8 Conclusion

We have shown how to efficiently calculate several rolling operators for unevenly spaced time
series. These operators in turn may serve as building blocks for more complicated data trans-
formations.

5For performance reasons, it is recommended to inline the code of the helper function to avoid the function
call overhead.
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