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Abstract

An unevenly spaced time series is a sequence of observation time and value pairs with
strictly increasing observation times. This paper examines some properties of such time
series and of their operators.

Theorem 6.13 uniquely characterizes the structure of the most widely used class of
linear operators, showing that each such linear operator is associated with a finite signed
measure, and vice versa, that each finite signed measured defines such a linear operator.

1 Introduction

There is extensive theory for the analysis of equally spaced data. However, much fewer methods
exist specifically for unevenly spaced time series. The emphasis of this literature has primarily
been on achieving a specific goal, such as modeling univariate autoregressive-moving-average
(ARMA) processes; see Jones (1981), Jones (1985), Belcher et al. (1994) and Brockwell (2008).
In astronomy, much effort has been devoted to the task of estimating the spectrum of irregular
time series data; see Lomb (1975), Scargle (1982), Bos et al. (2002), Thiebaut and Roques
(2005), and Broersen (2008). Müller (1991), Gilles Zumbach (2001), and Dacorogna et al.
(2001) examined unevenly spaced time series in the context of high-frequency financial data.

This paper takes a broader approach by examining the general properties of unevenly
spaced time series and their operators, without any specific application in mind. A special
effort is devoted to analyzing the structure of linear operators.

Section 2 introduces unevenly spaced time series and some elementary operations for them.
Section 3 defines time series operators and examines their commonly encountered structural
features. Section 4 introduces convolution operators, which form a particularly tractable and
widely used class of time series operators. Section 5 presents arithmetic, return, and rolling
operators as examples. Section 6 extensively analyzes linear time series operators, while Section
7 turns to multivariate time series and associated vector time series operators. Moving averages,
which summarize the average value of a time series over a certain horizon, are examined in
Section 8. An Appendix summarizes frequently used notation.

∗This paper previously circulated under the title “A Framework for the Analysis of Unevenly Spaced Time
Series Data.“ Based on feedback from readers I have shortened the paper and narrowed the scope.
†Comments are welcome at andreas@eckner.com
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2 Unevenly Spaced Time Series

An unevenly spaced time series is a sequence of observation time and value pairs (tn, Xn) with
strictly increasing observation times. This notion is made precise by the following

Definition 2.1 For n ≥ 1, we call

(i) Tn = {(t1 < t2 < . . . < tn) : tk ∈ R, 1 ≤ k ≤ n} the space of strictly increasing time
sequences of length n,

(ii) T = ∪∞n=1Tn the space of strictly increasing time sequences,

(iii) Rn the space of observation values for n observations,

(iv) Tn = Tn × Rn the space of real-valued, unevenly spaced time series of length n, and

(v) T = ∪∞n=1Tn the space of (real-valued) (unevenly spaced) time series.

Definition 2.2 For a time series X ∈ T , we denote

(i) N(X) to be the number of observations of X, particularly so that X ∈ TN(X);

(ii) T (X) = (t1, . . . , tN(X)) to be the sequence of observation times (of X); and

(iii) V (X) = (X1, . . . , XN(X)) to be the sequence of observation values (of X).

We will frequently use the informal but compact notation ((tn, Xn) : 1 ≤ n ≤ N(X)) and
(Xtn : 1 ≤ n ≤ N(X)) to denote a time series X ∈ T with observation times (t1, . . . , tN(X))
and observation values (X1, . . . , XN(X)).

1 Now that we have defined unevenly spaced time
series, we will introduce methods for extracting basic information from them.

Definition 2.3 For a time series X ∈ T and point in time t ∈ R (not necessarily an obser-
vation time), the most recent observation time is

PrevX(t) ≡ Prev(T (X), t) =

{
max(s : s ≤ t, s ∈ T (X)) if t ≥ min(T (X)),

min(T (X)) otherwise,

and the next available observation time is

NextX(t) ≡ Next(T (X), t) =

{
min(s : s ≥ t, s ∈ T (X)) if t ≤ max(T (X))

+∞ otherwise.

For minT (X) ≤ t ≤ maxT (X), PrevX(t) < t < NextX(t); unless t ∈ T (X), in which case
t is both the most recent and the next available observation time.

1For equally spaced time series, the reader may be used to using language like “the third observation“ of a
time series X. For unevenly spaced time series, it is often necessary to distinguish between the third observation
value, Xt3 , and the third observation tuple, or simply the third observation, (t3, X3), of a time series.
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Definition 2.4 (Sampling) For X ∈ T and t ∈ R, X[t]last = XPrev(X,t) is the sampled
value of X at time t, X[t]next = XNextX(t) is the next value of X at time t, and X[t]linear =

(1− ωX(t))XPrev(X,t) + ωX(t)XNextX(t) where

ωX(t) = ω(T (X), t) =

{
t−PrevX(t)

NextX(t)−PrevX(t)
if 0 < NextX(t)− PrevX(t) <∞,

0 otherwise,

is the linearly interpolated value of X at time t. These sampling schemes are called last-point,
next-point, and linear interpolation, respectively.

Note that the most recently available observation time before the first observation is taken
to be the first observation time. As a consequence, the sampled value of a time series X before
the first observation is equal to the first observation value. While potentially inappropriate
for some applications, this convention greatly simplifies notation and avoids the treatment of
a multitude of special cases in the exposition below.2

Remark 2.5 Fix a time series X ∈ T . Then,

(i) X[t]last = X[t]next = X[t]linear = Xt for t ∈ T (X);

(ii) X[t]last and X[t]next, as functions of t, are right-continuous piecewise-constant functions
with finite number of discontinuities; and

(iii) X[t]linear as a function of t is a continuous piecewise-linear function.

These observations suggest an alternative way of defining unevenly spaced time series;
namely, as either piecewise-constant or piecewise-linear functions X : R → R. Such a repre-
sentation, however, cannot capture the occurrence of identical consecutive observations, and
therefore ignores potentially important time series information. Moreover, such a framework
does not naturally lend itself to interpreting an unevenly spaced time series as a discretely-
observed continuous-time stochastic process, thereby ruling out a large class of data-generating
processes.

Definition 2.6 (Simultaneous Sampling) Fix an observation time sequence TX ∈ T.

(i) For a time series X ∈ T and sampling scheme σ ∈ {last, next, linear}, we call

Xσ[TX ] = ((ti, Xσ[ti]last) : ti ∈ TX)

the sampled time series of X (using sampling times T ).

(ii) For a continuous-time stochastic process Xc, we call

Xc[T ] = ((ti, X
c
ti) : ti ∈ TX)

the observation time series of Xc (at observation times TX).

2A software implementation might instead use a special symbol to denote a value that is not available. For
example, R (www.r-project.org) uses the constant NA, which propagates through all steps of an analysis because
the result of any calculation involving NAs is also NA.
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In particular, X[T (X)]σ = X for all time series X ∈ T and sampling schemes σ.

Definition 2.7 For X ∈ T , we call

(i) ∆t(X) = ((tn+1, tn+1 − tn) : 1 ≤ n ≤ N(X) − 1) the time series of tick (or observation
time) spacings (of X);

(ii) X{s, t} = ((tn, Xn) : s ≤ tn ≤ t, 1 ≤ n ≤ N(X)) for s ≤ t the subperiod time series (of
X) in [s, t];

(iii) B(X) = ((tn+1, Xn) : 1 ≤ n ≤ N(X) − 1) the backshifted time series (of X), and B the
backshift operator;

(iv) L(X, τ) = ((tn + τ,Xn) : 1 ≤ n ≤ N(X)) the lagged time series (of X) with lag τ ∈ R,
and L the lag operator; and

(v) D(X, τ) = ((tn, X[tn − τ ]last) : 1 ≤ n ≤ N(X)) = L(X[T (X) − τ ]last,−τ) the delayed
time series (of X) with delay τ ∈ R, and D the delay operator.

A time series X is equally spaced, if the observation values of ∆t(X) are all equal to a
constant c > 0. For such a time series and for τ = c, the backshift operator is identical to the
lag operator (apart from the last observation) and to the delay operator (apart from the first
observation). In particular, the backshift, delay, and lag operator are identical for an equally
spaced time series with time index t ∈ Z. These transformations are genuinely different for
unevenly spaced data, however, because the backshift operator shifts observation values, while
the lag operator shifts observation times.3

Example 2.8 Let X be a time series of length three with observation times T (X) = (0, 2, 5)
and observation values V (X) = (1,−1, 2.5). Then

X[t]last =


1 for t < 2,
−1 for 2 ≤ t < 5,
2.5 for t ≥ 5,

X[t]next =


1 for t ≤ 0,
−1 for 0 < t ≤ 2,
2.5 for t > 2,

X[t]linear =


1 for t < 0

1− t for 0 ≤ t < 2
7
6 t−

10
3 for 2 ≤ t < 5,

2.5 for t ≥ 5.

These three graphs are shown in Figure 1. Moreover,

∆t(X)[s]last =

{
2 for s < 5,
3 for s ≥ 5,

because T (∆t(X)) = (2, 5) and V (∆t(X)) = (2, 3), and

B(X)[t]last =

{
1 for t < 5,
−1 for t ≥ 5,

L(X, 1)[t]last =


1 for t < 3,
−1 for 3 ≤ t < 6,
2.5 for t ≥ 6.

3The difference between the lag and delay operator is that the former shifts the information filtration of
observation times and values, while the latter shifts only the information filtration of observation values.
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Figure 1: The sampling-scheme-dependent graph of the time series X with T (X) = (0, 2, 5) and V (X) =

(1,−1, 2.5). The three observation time-value pairs are denoted by solid black circles.

The following result, which elaborates on the relationship between the lag operator L and
the sampling operator, will be heavily used throughout the paper.

Lemma 2.9 For X ∈ T and τ ∈ R,

(i) T (L(X, τ)) = T (X) + τ ,

(ii) L(X, τ)t+τ = Xt for t ∈ T (X),

(iii) L(X, τ)t = Xt−τ for t ∈ T (L(X, τ)), and

(iv) L(X, τ)[t]σ = X[t− τ ]σ for t ∈ R and sampling scheme σ. In other words, depending on
the sign of τ , the lag operator shifts the sample path of a time series either backward or
forward in time.

Proof. Relationships (i) and (ii) follow directly from the definition of the lag operator, while
(iii) follows by combining (i) and (ii). For (iv), we note that

PrevL(X,τ)(t) = Prev(T (L(X, τ)), t) = Prev(T (X) + τ, t) = Prev(T (X), t− τ) + τ
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where the second equality follows from (i). Hence,

L(X, τ)[t]last = L(X, τ)PrevL(X,τ)(t)

= L(X, τ)Prev(T (X),t−τ)+τ

= XPrev(T (X),t−τ)

= X[t− τ ]last,

where the third equality follows from (ii). The proofs for the other two sampling schemes are
similar.

At this point, the reader might want to check her understanding by verifying the identity
X = L(L(X, τ)[T (X) + τ ]last,−τ) for all time series X ∈ T and τ ∈ R.

3 Time Series Operators

Time series operators (also called “systems“ in the signal processing literature) take a time
series as input and leave as output a transformed time series. We already encountered a few
operators; such as the backshift (B), subperiod ({}), and tick spacing operator (∆); in the
previous section.

The key difference between time series operators for evenly and unevenly spaced observa-
tions is that, for the latter, the observation values in the transformed series can depend on
the spacing of observation times. This interaction between observation values and observation
times calls for a careful analysis and classification of the structure of such operators.

Definition 3.1 A time series operator is a mapping O : T → T ; or equivalently, a pair of
mappings (OT ,OV ); where OT : T → T is the transformation of observation times, OV : T →
∪n≥1Rn is the transformation of observation values, and |OT (X)| = |OV (X)| for all X ∈ T .

The constraint at the end of the definition ensures that the number of observation values
and observation times for the transformed time series agree. In particular, using this notation,
we have T (O(X)) = OT (X) and V (O(X)) = OV (X) for time series X ∈ T and a time series
operator O.

Example 3.2 Fix a sampling scheme σ ∈ {last, next, linear} and observation time sequence
T ∈ T. The mapping that assigns each time series X ∈ T the sampled time series X[T ]σ (see
Definition 2.6) is a time series operator.

The above definition of a time series operator is completely general. In practice, most
operators share one or more of the structural features listed below.

3.1 Tick Invariance

In many cases, the observation times of the transformed time series are identical to those of
the original time series.

Definition 3.3 A time series operator O is tick invariant if T (O(X)) = T (X) for all X ∈ T .
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Such operators cover the vast majority of the cases in presented in this paper. Notable
exceptions are the lag operator L and various resampling schemes. For some results, a weaker
property than tick-invariance is sufficient.

Definition 3.4 A time series operator O is lag free if maxT (O(X)) ≤ maxT (X) for all
X ∈ T .

In other words, for lag-free operators, when one has finished observing an input time series,
the entire output time series is also observable at that point in time.

3.2 Causality

Definition 3.5 A time series operator O is causal (or adapted) if

O(X){−∞, t} = O(X{−∞, t}){−∞, t} (3.1)

for all X ∈ T and t ∈ R.

In other words, a time series operator is causal if the output up to each time point t depends
only on the input up to that time.4 Equivalently, if two time series are identical up to some
time, then a causal transformation produces transformed time series that are likewise identical
up to the same time.

In many cases, the following convenient characterization is useful:

Lemma 3.6 A time series operator O is causal and lag free if and only if the order of O and
the subperiod operator is interchangeable; that is

O(X){−∞, t} = O(X{−∞, t}) (3.2)

for all X ∈ T and t ∈ R.

Proof.

=⇒ If O is lag-free, then

maxT (O(X{−∞, t})) ≤ maxT (X{−∞, t}) ≤ t (3.3)

which implies that O(X{−∞, t}){−∞, t} = O(X{−∞, t}) and combined with (3.1)
shows (3.2).

⇐= Applying maxT (.) to both sides of (3.2) gives

maxT (O(X{−∞, t})) ≤ t

for all X ∈ T and t ∈ R. Setting t = maxT (X) shows that O is lag-free. Hence (3.1)
follows from (3.2) and (3.3).

In particular, the order of a causal, tick-invariant operator and the subperiod operator is
interchangeable.

4If X was a stochastic process instead of a fixed time series, we would call an operator O adapted if O(X)
was adapted to the filtration generated by X.
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3.3 Shift or Time Invariance

For many data sets, only the relative, but not the absolute, positions of observation times are
of interest; and this property should be reflected in the analysis that is carried out.

Definition 3.7 A time series operator O is shift invariant (or time invariant), if the order of
O and the lag operator L is interchangeable. In other words, for all X ∈ T and τ ∈ R,

O(L(X, τ)) = L(O(X), τ); (3.4)

or equivalently,

OT (L(X, τ)) = OT (X) + τ , and (3.5)

OV (L(X, τ)) = OV (X). (3.6)

Lemma 3.8 A time series operator O is shift invariant if and only if

O(X)t = O(L(X,−t))0 (3.7)

for all X ∈ T and t ∈ T (O(X)).

Proof.

=⇒ Setting τ = −t in (3.4) and sampling at time zero gives

O(L(X,−t))0 = L(O(X),−t)0

= O(X)t,

where the second equality follows from Lemma 2.9 (ii).

⇐= Fix X ∈ T , t ∈ T (O(L(X, τ))), and τ ∈ R. If (3.7) holds, then it particularly holds for
L(X, t) and L(X, t− τ), which gives

O(L(X, τ))t = O(L(L(X, τ),−t))0

= O(L(X, τ − t))0

= O(L(X,−(t− τ)))0

= O(X)t−τ

= L(O(X, τ))t,

where we use Lemma 2.9 (iii) for the last equality.

In particular, a (by definition T -valued) time series operator that is shift invariant can be
represented by a single real-valued function. Specifically, O(X)t = g(X, t) for t ∈ T (O(X))
and g : T × R→ R given by g(Y, t) = O(L(Y,−t))0.
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3.4 Time Scale Invariance

The measurement unit of the time scale is generally not of interest in an analysis of time series
data. Therefore, we usually focus on (families of) time series operators that are invariant under
a rescaling of the time axis.

Definition 3.9 For X ∈ T and a > 0, the time-scaling operator Sa is defined as

Sa(X) = S(X, a) = ((atn, Xn) : 1 ≤ n ≤ N(X)).

Lemma 3.10 For X ∈ T and a > 0,

(i) T (Sa(X)) = aT (X),

(ii) Sa(X)at = Xt for t ∈ T (X),

(iii) Sa(X)t = Xt/a for t ∈ T (Sa(X)), and

(iv) Sa(X)[t]σ = X[t/a]σ for t ∈ R and sampling scheme σ. In other words, depending on the
sign of a− 1, the time-scaling operator either compresses or stretches the sample path of
a time series.

Proof. The proof is very similar to that of Lemma 2.9.
Certain sets of time series operators are naturally indexed by one or more parameters. For

example, simple moving averages (see Section 8.1) can be indexed by the length of the moving
average time window.

Definition 3.11 A family of time series operators {Oτ : τ ∈ (0,∞)} is timescale invariant if

Oτ (X) = S1/a(Oτa(Sa(X)))

for all X ∈ T , a > 0, and τ ∈ (0,∞).

The families of rolling return operators (Section 5.2), simple moving averages (Section 8.1),
and exponential moving averages (Section 8.2) are timescale invariant.

3.5 Homogeneity

Scaling properties are of interest not only for the time scale, but also for the observation value
scale.

Definition 3.12 A time series operator O is homogeneous of degree d ≥ 0 if O(aX) = ad O(X)
for all X ∈ T and a > 0.5

The tick-spacing operator ∆t is homogeneous of degree d = 0, moving averages are homo-
geneous of degree d = 1, and the operator that calculates the integrated p-variation of a time
series is homogeneous of degree d = p.

Remark 3.13 The sampling operator of Example 3.2 is linear (see Section 6), homogeneous
of degree d = 1, and causal iff we use last-point sampling; and is neither tick invariant, shift
invariant, nor timescale invariant.

5For a time series X and scalar a ∈ R, aX denotes the time series that results by multiplying each observation
value of X by a. See Section 5.1 for a systematic treatment of time series arithmetic.
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4 Convolution Operators

Convolution operators are a class of tick-invariant, causal, shift-invariant (and often homoge-
neous) time series operators that are particularly tractable. To this end, recall that a signed
measure on a measurable space (Ω,Σ) is a measurable function µ that satisfies (i) µ(∅) = 0
and if A = +iAi is a countable disjoint union of sets in Σ with either

∑
i µ(Ai)

− < ∞ or∑
i µ(Ai)

+ <∞, then also (ii) µ(A) =
∑

i µ(Ai).

Proposition 4.1 If µ is a signed measure on (Ω,Σ) that is absolutely continuous with respect
to a σ-finite measure ν, then there exists a function (density) f : Ω→ R such that

µ(A) =

∫
A
f(x) dν(x)

for all A ∈ Σ.

This result is a consequence of the Jordan decomposition and the Radon Nikodym theorem.
See, for example, Section 32 in Billingsley (1995) or Appendix A.8 in Durrett (2005) for details.

Definition 4.2 A (univariate) time series kernel µ is a signed measure on (R×R+,B⊗B+)6

with ∫ ∞
0
|dµ(f(s), s)| <∞

for all bounded piecewise linear functions f : R+ → R, where the integration is over the time
variable s.

The integrability condition ensures that the value of a convolution is well-defined and finite.
In particular, the condition is satisfied if dµ(x, s) = g(x) dµT (s) for some real function g and
finite signed measure µT on R+, which is indeed the case throughout this paper.

Definition 4.3 (Convolution Operator) For a time series X ∈ T , kernel µ, and sampling
scheme σ ∈ {last,next, linear}, the convolution ∗µσ(X) = X ∗σ µ is a time series with

T (X ∗σ µ) = T (X), (4.8)

(X ∗σ µ)t =

∫ ∞
0

dµ(X[t− s]σ, s), t ∈ T (X ∗σ µ). (4.9)

If µ is absolutely continuous with respect to the Lebesgue measure on R × R+, then (4.9) can
be written as

(X ∗σ µ)t =

∫ ∞
0

f(X[t− s]σ, s) ds, t ∈ T (X ∗σ µ), (4.10)

where f is the density function of µ.

6B ⊗ B+ is the Borel σ-algebra on R× R+.
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Remark 4.4 (Discrete Time Analog) The discrete-time analogs to convolution operators
are additive (but generally nonlinear), causal, time-invariant filters of the form

Yn =

∞∑
k=0

fk(Xn−k),

where (Xn : n ∈ Z) is a stationary time series, and f0, f1, . . . are real-valued functions subject to
certain integrability conditions. As discussed in Section 6, the representation simplifies further
in the case of linearity.

In the remainder of the paper, we primarily focus on last-point sampling and therefore
often omit the “σ“ from the notation of a convolution operator. All of our results also hold
for the other two sampling schemes, but we do not always provide separate derivations.

Proposition 4.5 The convolution operator ∗µ, associated with a (univariate) time series ker-
nel µ, is tick invariant, causal, and shift invariant.

Proof. Tick-invariance and causality follow immediately from the definition of a convolution
operator. Shift-invariance can be shown either using Lemma 3.8 or directly, which we do here
for illustrative purposes. To this end, let X ∈ T and τ > 0. Using (4.8) twice we get

(∗µ)T (L(X, τ)) = T (L(X, τ)) = T (X) + τ = T (X ∗ µ) + τ = (∗µ)T (X) + τ,

showing that ∗µ satisfies (3.5). On the other hand, for t ∈ T (∗µ(L(X, τ))) = T (X) + τ ,

(X ∗ µ)t−τ =

∫ ∞
0

dµ(X[(t− τ)− s]last, s)

=

∫ ∞
0

dµ(L(X, τ)[t− s]last, s)

= (L(X, τ) ∗ µ)t,

where we use Lemma 2.9 (iv) for the second equality. Hence, we also have (∗µ)V (X) =
(∗µ)V (L(X, τ)) and ∗µ is therefore shift invariant.

Not all time series operators that are tick invariant, causal, and shift invariant can, however,
be expressed as convolution operators. For example, the operator that calculates the smallest
observation value in a rolling time window (see Section 5.3) is not of this form.

As the following example illustrates, when a time series operator can be expressed as a
convolution operator, the associated kernel is not unique.

Example 4.6 Let O be the operator that sets all observation values of a time series equal
to zero, that is, T (O(X)) = T (X) and O(X)t = 0 for all t ∈ T (O(X)) and X ∈ T . Then
O(X) = ∗µ(X) for all X ∈ T for the following kernels:

(i) µ(x, s) = 0,

(ii) µ(x, s) = 1{s∈N} where N ∈ B+ is a Lebesgue null set, and

(iii) µ(x, s) = 1{f(s)=x} where f : R+ → R satisfies λ(f−1({x})) = 0 for all x ∈ R.7

When we say that the kernel of a convolution operator has a certain structure, we imply
that one of the equivalent kernels is of that structure.

7In other words, f is a function that assumes each value in R at most on a null set of time points. Examples
are f(s) = sin(s), f(s) = exp(s), f(s) = s2.
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5 Examples

This section gives examples of univariate time series operators that can be expressed either as
convolution operators or as simple transformations of them.

5.1 Time Series Arithmetic

It is straightforward to extend the four basic arithmetic operations of mathematics - addition,
subtraction, multiplication and division - to unevenly spaced time series.

Definition 5.1 (Arithmetic Operations) For a time series X ∈ T and c ∈ R, we call

(i) c+X (or X + c) with T (c+X) = T (X) and V (c+X) = (c+X1, . . . , c+XN(X)) “the
sum of c and X,“

(ii) cX (or Xc) with T (cX) = T (X) and V (cX) = (cX1, . . . , cXN(X)) “the product of c and
X,“ and

(iii) 1/X with T (1/X) = T (X) and V (1/X) = (1/X1, . . . , 1/XN(X)) “the inverse of X,“
provided that all observation values of X are non-zero.

Definition 5.2 (Arithmetic Time Series Operations) For time series X,Y ∈ T and sam-
pling scheme σ ∈ {last, next, linear}, we call

(i) X+σY with T (X+σY ) = T (X)∪T (Y ) and (X+σY )t = X[t]σ+Y [t]σ for t ∈ T (X+σY )
“the sum of X and Y ,“ and

(ii) XσY with T (XσY ) = T (X) ∪ T (Y ) and (XσY )t = X[t]σY [t]σ for t ∈ T (XσY ) “the
product of X and Y ,“

where TX ∪ TY for TX , TY ∈ T denotes the sorted union of TX and TY .

Proposition 5.3 The arithmetic operators in Definition 5.1 are convolution operators with
kernel µ(x, s) = (c+ x)δ0(s), µ(x, s) = cxδ0(s), and µ(x, s) = δ0(s)/x, respectively.

Proof. For X ∈ T , c ∈ R, and µ(x, s) = (c + x)δ0(s), by definition, T (X ∗ µ) = T (X) =
T (c+X). For t ∈ T (X ∗ µ),

(X ∗ µ)t =

∫ ∞
0

dµ(X[t− s]last, s)

=

∫ ∞
0

(c+X[t− s]last)δ0(s) ds

= c+Xt,

and, therefore, also V (X ∗ µ) = V (c+X). The reasoning for the other two kernels is similar.

Proposition 5.4 The sampling operator is linear, that is,

(aX +σ bY )[t]σ = aX[t]σ + bY [t]σ

for time series X,Y ∈ T , sampling scheme σ, and a, b ∈ R.
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Proof. The result follows directly from the definition of the corresponding arithmetic opera-
tions. For example, in the case of last-point sampling,

(aX + bY )[t]last = (aX + bY )Prev(T (aX+bY ),t)

= ((aX + (bY ))Prev(T (X)∪T (X),t)

= (aX)[Prev(T (X) ∪ T (X), t)]last + (bY )[Prev(T (X) ∪ T (X), t)]last

= aX[Prev(T (X) ∪ T (X), t)]last + bY [Prev(T (X) ∪ T (X), t)]last

= aXPrevX(t) + bYPrevY (t)

= aX[t]last + bY [t]last,

where we used

PrevX(Prev(T (X) ∪ T (X), t)) = PrevX(t)

for the second to last equality.
Note that in general, 1/X[t]linear does not equal (1/X)[t]linear for X ∈ T and t /∈ T (X),

although equality holds for the other two sampling schemes. Similarly, (XσY )[t]linear usually
does not equal X[t]linearY [t]linear for X,Y ∈ T and t /∈ T (X), but equality holds for the other
two sampling schemes.

What does “the sum of X and Y “ actually mean for two time series X and Y that are
not synchronized; or what would we want it to mean? If X and Y are discretely observed
realizations of continuous-time stochastic processes Xc and Y c, respectively, we might want
(X+Y )[t]last to be a “good guess“ of (Xc+Y c)t, given all available information. The following
example describes two settings where this desirable property holds.

Example 5.5 Let Xc and Y c be two independent continuous-time stochastic processes, TX , TY ∈
T be fixed observation time sequences, and X = Xc[TX ] and Y = Y c[TY ] be the corresponding
observation time series of Xc and Y c, respectively. Furthermore, let Ft = σ(Xs : s ≤ t) and
Gt = σ(Ys : s ≤ t) denote the filtration generated by X and Y , respectively, and Ht = Ft ∪ Gt.

(i) If X and Y are martingales, then

E((Xc + Y c)t|Ht) = (X + Y )[t]last (5.11)

for all t ≥ max(minTX ,minTY ), that is, for time points for which both X and Y have
at least one past observation.

(ii) If Xc and Y c are Lévy processes (but not necessarily martingales),8 then

E((Xc + Y c)t|H∞) = X[t]linear + Y [t]linear = (X +linear Y )[t] (5.12)

for all t ∈ R.9

8A Lévy process has independent and stationary increments, and is continuous in probability. Brownian
motion and homogenous Poisson processes are special cases. See Sato (1999) and Protter (2005) for details.

9If Xc and Y c are martingales without stationary increments, then hardly anything can be said about the
conditional expectation on the left-hand side of (5.12) without additional information about Xc and Y c. The
LHS could even be larger than the largest observation value of X+linearY . Details are available from the author
upon request.
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Proof. If Xc and Y c are independent martingales, then

E((Xc + Y c)t|Ht) = E(Xc
t |Ht) + E(Y c

t |Ht)
= E(Xc

t |Ft) + E(Y c
t |Gt)

= E(Xc
t |FPrevX(t)) + E(Y c

t |GPrevY (t))

= Xc
PrevX(t)

+ Y c
PrevY (t)

= X[t]last + Y [t]last

= (X + Y )[t]last,

showing (5.11). For a Lévy process Z and times s ≤ t ≤ r, Zr − Zs has an infinitely divisible
distribution, and the conditional expectation E(Zt|Zs, Zr) is therefore the linear interpolation
of (s, Zs) and (r, Zr) evaluated at time t. Hence, (5.12) follows from similar reasoning as (5.11).

Apart from the four basic arithmetic operations, other scalar mathematical transformations
can also be extended to unevenly spaced time series. For X ∈ T and function f : R → R, we
call f(X) the time series that results when applying the function f to each observation value
of X. For example,

exp(X) = ((tn, exp(Xn)) : 1 ≤ n ≤ N(X)).

Elementwise time series operators are convolution operators with kernel µ(x, s) = f(x)δ0(s).

5.2 Return Calculations

In many applications, it is of interest to either analyze or report the change of a time series
over a fixed time horizon; such as one day, month, or year. This section examines how to
calculate such time series returns.

Definition 5.6 For time series X,Y ∈ T , we call

(i) ∆kX = ∆(∆k−1X) for k ∈ N with ∆X = ((tn, Xn − Xn−1) : 1 ≤ n ≤ N(X) − 1) for
k > 0 and ∆0X = X the k-th order difference time series (of X), and

(ii) diffγ(X,Y ) with scale γ ∈ {abs, rel, log} the absolute/relative/log difference between X
and Y , where

diffγ(X,Y ) =


X − Y if γ = abs
X
Y − 1 if γ = rel

log
(
X
Y

)
if γ = log,

provided that X and Y are positive-valued time series for γ ∈ {rel, log}.10

Definition 5.7 (Returns) For a time series X ∈ T , time horizon τ > 0, and return scale
γ ∈ {abs, rel, log}, we call

(i) retroll
γ (X, τ) = diffγ(X,D(X, τ)) the rolling absolute/relative/log return time series (of X

over horizon τ),

10Again, we use an analogous definition for other sampling schemes. For example, diffabs,lin(X,Y ) = X−linear

Y denotes the absolute, linearly interpolated difference between X and Y .
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(ii) retobs
γ (X) = diffγ(X,B(X)) the absolute/relative/log observation (or tick) return time

series (of X),

(iii) retSMAlast
γ (X, τ) = diffγ(X,SMAlast(X, τ)) the absolute/relative/log simple moving aver-

age (SMA) return time series (of X over horizon τ), and

(iv) retEMAlast
γ (X, τ) = diffγ(X,EMAlast(X, τ)) the absolute/relative/log exponential moving

average (EMA) return time series (of X over horizon τ),

provided that X is a positive-valued time series for γ ∈ {rel, log}. See Section 8 for details
regarding the moving average operators SMAlast and EMAlast.

The interpretation of the first two return definitions is immediately clear, while Section 8.3
provides a motivation for the last two definitions.

Proposition 5.8 The return operators retroll, retSMAlast, and retEMAlast are either convolution
operators or convolution operators combined with simple transformations.

Proof. For a time series X ∈ T and time horizon τ > 0, it is easy to see that

diffγ(X,D(X, τ)) =

{
X ∗ µ if γ ∈ {abs, log},

exp(X ∗ µ)− 1 if γ = rel,

with

µ(x, s) =

{
x(δ0(s)− δτ (s)) if γ = abs,

log(x)(δ0(s)− δτ (s)) if γ ∈ {rel, log},

provided that X is a positive-valued time series for γ ∈ {rel, log}. Using their respective
definitions in Section 8, the proofs for the other two return operators are similar.

5.3 Rolling Time Series Functions

In many cases, it is desirable to extract a certain piece of local information about a time series.
Rolling time series functions allow us to do just that.

Definition 5.9 (Rolling Time Series Functions) Assume that we are given a function f :
T → R that is shift invariant in the sense that f(X) = f(L(X, η)) for all η ∈ R and X ∈ T .
For a time series X ∈ T and time horizon τ ∈ R+ ∪ {∞}, the “rolling function f of X over
horizon τ ,“ denoted by roll(X, f, τ), is the time series with

T (roll(X, f, τ)) = T (X),

roll(X, f, τ)t = f(X{t− τ, t}), t ∈ T (roll(X, f, τ)).

Proposition 5.10 The class of rolling time series operators is identical to the class of causal,
shift-invariant, and tick-invariant operators.

Proof.
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=⇒ By construction, every rolling time series function is causal and tick-invariant. Further-
more, shift-invariance of f implies

roll(X, f, τ)t = f(X{t− τ, t})
= f(L(X, η){t+ η − τ, t+ η})
= roll(L(X, η), f, τ)t+η,

or equivalently, V (roll(X, f, τ)) = V (roll(L(X, η), f, τ)) for all X ∈ T and η ∈ R. Hence,
roll(., f, τ) is also shift invariant.

⇐= If O is a causal, shift-invariant, and tick-invariant time series operator, then

O(X)t = O(X{−∞, t})t.

Hence, if we define f : T → R as f(X) = O(X)maxT (X), then we have O(X)t =
roll(X, f,−∞)t for all X ∈ T and t ∈ T (X). We are left to show that f is shift-invariant.
Using Lemma 2.9 (ii) applied to O(X) and the shift-invariance of O,

f(X) = O(X)maxT (X)

= L(O(X), η)maxT (X)+η

= O(L(X, η))maxT (X)+η

= O(L(X, η))maxT (L(X,η))

= f(L(X, η))

for all η ∈ R and X ∈ T .

In particular, rolling time series functions include convolution operators. Many operators,
however, that cannot be expressed as convolution operators are included as well:

Example 5.11 For a time series X ∈ T , horizon τ ∈ R+ ∪ {∞}, and function f : T → R,
we call roll(X, f, τ) with

(i) f(Y ) = |V (Y )| = N(Y ) the rolling number of observations,

(ii) f(Y ) =
∑N(Y )

i=1 V (Y )i the rolling sum,

(iii) f(Y ) = 1
N(Y )

∑N(Y )
i=1 V (Y )i the rolling average (or mean),

(iv) f(Y ) = maxV (Y ) the rolling maximum (also denoted by rollmax(X, τ)),

(v) f(Y ) = minV (Y ) the rolling minimum (also denoted by rollmin(X, τ)),

(vi) f(Y ) = maxV (Y )−minV (Y ) the rolling range (also denoted by range(X, τ)), and

(vii) f(Y ) = 1
N(Y )

∣∣{i : 1 ≤ i ≤ N(Y ), V (Y )i ≤ V (Y )N(Y )}
∣∣ the rolling quantile,

of X over horizon τ > 0.
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6 Linear Time Series Operators

Linear operators (also called “linear systems‘in the signal processing literature) are pervasive
when working with vector spaces, and the space of unevenly spaced time series is no exception.
To fully appreciate the structure of such operators, we need to take a closer look at the
properties of time series sample paths.

6.1 Sample Paths

Definition 6.1 (Sample Path) For a time series X ∈ T and sampling scheme σ ∈ {last,next, linear},
the function SPσ(X) : R → R with SPσ(X)(t) = X[t]σ for t ∈ R is called the sample path of
X (for sampling scheme σ). Furthermore,

SPσ = {SPσ(X) : X ∈ T }

is the space of sample paths, and SPσ(t) is the space of sample paths that are constant after
time t ∈ R.

In particular, SPσ(X) ∈ SPσ(maxT (X)) for X ∈ T , because the sampled value of a time
series is constant after its last observation.

Lemma 6.2 The mapping of a time series to its sample path is linear, that is,

SPσ(aX +σ bY ) = aSPσ(X) + bSPσ(Y )

for all X,Y ∈ T , each sampling scheme σ, and a, b ∈ R.

Proof. Using the sample path definition and Proposition 5.4,

SPσ(aX +σ bY )(t) = (aX +σ bY )[t]σ

= aX[t]σ + bY [t]σ

= a SPσ(X)(t) + bSPσ(Y )(t)

for all t ∈ R.

Lemma 6.3 Fix a sampling scheme σ. Two time series X,Y ∈ T have the same sample path
if and only if the observation values of X −σ Y are identical to zero.

Proof. The result follows from Lemma 6.2 with a = 1 and b = −1.
The space of sample paths SPσ (or SPσ(t) for fixed t ∈ R) can be turned into a normed

vector space, see Kreyszig (1989) or Kolmogorov and Fomin (1999). Specifically, given two
elements x, y ∈ SPσ and number a ∈ R, define x + y and ax as the real functions with
(X + Y )(t) = x(t) + y(t) and (aX)(t) = ax(t), respectively, for t ∈ R. It is straightforward to
verify that

‖x‖SP = max
t∈R
‖x(t)‖

for x ∈ SPσ defines a norm on SPσ and (SPσ, ‖ ‖SP) is therefore a normed vector space.
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It is easy to see that

max
t∈T (X)

‖Xt‖ = ‖ SPσ(X)‖SP

for all X ∈ T and each sampling scheme σ. Hence,

‖X‖T = max
t∈T (X)

|Xt|

defines a norm on T , making (T , ‖ ‖T ) a normed vector space also.11

Corollary 6.4 For each sampling scheme σ, the mapping X → SPσ(X) is an isometry between
(T , ‖ ‖T ) and (SPσ, ‖ ‖SP). In other words,

‖X‖T = ‖SPσ(X)‖SP

for all X ∈ T .

Lemma 6.5 The order of the lag operator L and the mapping of a time series to its sample
path is interchangeable in the sense that

SPσ(X)(t− τ) = SPσ(L(X, τ))(t)

for all X ∈ T and t, τ ∈ R, and each sampling scheme σ.
Proof. The result follows from Lemma 2.9 (iv).

6.2 Bounded Linear Operators

Definition 6.6 A time series operator O is linear for a sampling scheme σ if O(aX+σ bY ) =
aO(X) +σ bO(Y ) for all X,Y ∈ T and a, b ∈ R.

In particular, linear time series operators are homogeneous of degree one, although the
reverse is generally not true. For example, the operator that calculates the smallest observation
value in a rolling time window (see Example 5.11) is homogeneous of degree one but not linear.

Definition 6.7 A time series operator O is

(i) bounded if there exists a constant M <∞ such that

‖O(X)‖T ≤M‖X‖T

for all X ∈ T , and

(ii) continuous (for sampling scheme σ) if for all ε > 0 there exists a δ > 0 such that

‖X −σ Y ‖T < δ

for X,Y ∈ T implies

‖O(X)−σ O(Y )‖T < ε.
11Strictly speaking, T is not a vector space because it has no unique zero element. If we consider two time

series X and Y to be equivalent if their sample paths are identical, however, then the space of equivalence classes
in T is a well-defined vector space. For our discussion, this distinction is not important, see Lemma 6.11, and
we therefore do not distinguish between T and the space of equivalence classes in T .
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Proposition 6.8 A linear time series operator O is bounded if and only if it is continuous.

Proof. The equivalence of boundedness and continuity holds for any linear operator between
two normed vector spaces; see Kreyszig (1989), Chapter 2.7 or Kolmogorov and Fomin (1999),
§29.

For the remainder of this paper, we shall exclusively focus on bounded, and therefore
continuous, linear operators.

Theorem 6.9 If a time series kernel µ is of the form

µ(x, s) = xµT (s), (6.13)

where µT is a finite signed measure on (R+,B+), then for each sampling scheme σ the associated
convolution operator ∗µσ is a bounded linear operator.

Proof. First note

T ((aX +σ bY ) ∗σ µ) = T (aX +σ bY )

= T (aX) ∪ T (bY )

= T (X) ∪ T (X)

= T (X ∗σ µ) ∪ T (Y ∗σ µ)

= T (a(X ∗σ µ)) ∪ T (b(Y ∗σ µ))

= T (a(X ∗σ µ) +σ b(Y ∗σ µ))

because convolution and arithmetic operators are tick invariant. For t ∈ T ((aX +σ bY ) ∗σ µ),

((aX +σ bY ) ∗σ µ)t =

∫ ∞
0

dµ((aX +σ bY )[t− s]σ, s)

=

∫ ∞
0

dµ(aX[t− s]σ + bY [t− s]σ, s)

=

∫ ∞
0

(aX[t− s]σ + bY [t− s]σ) dµT (s)

= a

∫ ∞
0

X[t− s]σ dµT (s) + b

∫ ∞
0

Y [t− s]σ dµT (s)

= a(X ∗σ µ)t + b(Y ∗σ µ)t,

showing that ∗µσ is indeed linear. Furthermore,

|(X ∗σ µ)t| =
∣∣∣∣∫ ∞

0
X[t− s]σ dµT (s)

∣∣∣∣ (6.14)

≤
∫ ∞

0
|X[t− s]σ||dµT (s)|

≤ ‖X‖T
∫ ∞

0
| dµT (s)|

= ‖X‖T ‖µT ‖TV,
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for all t ∈ T (X), where ‖µT ‖TV is the total variation of the signed measure µT , which is finite
by assumption. Taking the maximum over all t ∈ T (X ∗σ µ) on the left-hand side of (6.14)
gives

‖ ∗µσ (X)‖T ≤ ‖X‖T · ‖µT ‖TV,

which shows the boundedness of ∗µσ.
The next subsection shows that, under reasonable conditions, the reverse is also true. In

other words, convolution operators with linear kernel of the form (6.13) are the only interesting
bounded linear operators. To show this result, we need to take a closer look at how individual
time series observations are used by a linear convolution operator of the form (6.13).

Remark 6.10 Assume we are given a time series X ∈ T and a linear convolution operator
of form (6.13). Define t0 = −∞ and Xt0 = Xt1. For each observation time t = tn ∈ T (X),

(X ∗ µ)tn = µT ({0})Xtn +
n∑
k=1

µT ((tn − tk, tn − tk−1])Xtk−1

for last-point sampling,

(X ∗next µ)tn =

n∑
k=1

µT ([tn − tk, tn − tk−1))Xtk

for next-point sampling, and

(X ∗linear µ)tn =
n∑
k=1

ak,nXtk

for sampling with linear interpolation, where the coefficients ak,n for 1 ≤ k ≤ n depend only
on µT and the observation time spacings.

6.3 Linear Operators as Convolution Operators

Clearly, a time series contains all of the information about its sample path. On the other hand,
the sample path of a time series contains only a subset of the time series information, because
the observation times are not uniquely determined by the sample path alone. The following
result shows that linear time series operators use only this reduced amount of information
about a time series.

Lemma 6.11 Let O be a linear time series operator for sampling scheme σ. There exists a
function gσ : SPσ → SPσ such that SPσ(O(X)) = gσ(SPσ(X)) for all X ∈ T . In other words,
for linear operators the sample path of the output time series depends only on the sample path
of the input time series.

Proof. For each sample path x ∈ SPσ, we choose12 one (of the infinitely many) time series
X ∈ T with SPσ(X) = x and define

gσ(x) = SPσ(O(X)).

12Given a sample path, a matching time series can be constructed by looking at the kinks (for linear interpo-
lation) or jumps (for the other sampling schemes) of the sample path.
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We need to show that gσ is uniquely defined for each x ∈ SPσ. Assume there exist two time
series X,Y ∈ T with SPσ(X) = SPσ(Y ), but SPσ(O(X)) 6= SPσ(O(Y )). Because O is linear,

aO(X −σ Y ) = O(a(X −σ Y )) (6.15)

for all a ∈ R. Lemma 6.3 implies that the observation values of X −σ Y (and therefore also
a(X −σ Y )) are identical to zero. Hence, (6.15) can be satisfied for all a ∈ R only if the
observation values of O(X −σ Y ) (and therefore also O(X) −σ O(Y )) are identical to zero.
Applying Lemma 6.3 once more shows that O(X) and O(Y ) have the same sample path, in
contradiction to our assumption.

A lot more can be said about linear operators that satisfy additional, quite general, prop-
erties.

Theorem 6.12 Let O be a bounded, causal, shift- and tick-invariant time series operator that
is linear for sampling scheme σ. Then O is a convolution operator with kernel of the form
µ(x, s) = xµT (s), where µT is a finite signed measure on (R+,B+).

Proof. See Appendix A.
Combining Proposition 4.5, and Theorems 6.9 and 6.12 yields the main result of this section:

Theorem 6.13 The class of bounded, linear, causal, shift-and tick-invariant time series oper-
ators coincides with the class of convolution operators with kernels of the form µ(x, s) = xµT (s)
where µT is a finite signed measure on (R+,B+).

Remark 6.14 The class of bounded, linear, shift- and tick-invariant (but not necessarily
causal) time series operators coincides with the class of convolution operators with kernel of
the form µ(x, s) = xµT (s) where µT is a finite signed measure on (R,B).

Using these results, the discrete-time analogs of convolution operators derived in Remark
4.4 can be further simplified for linear operators.

Remark 6.15 (Discrete Time Analog - continued) The discrete-time analog of linear con-
volution operators are causal, linear, shift-invariant filters of the form

Yn =

∞∑
k=0

akXn−k,

with
∑∞

k=0 |ak| < ∞, where (Xn : n ∈ Z) is a stationary time series. The condition that the
filter coefficients are absolutely convergent implies that the transformed time series is station-
ary if the input time series is stationary; see Brockwell and Davis (1991), Proposition 3.2.1.
The coefficients of the discrete-time filter are related to the time series kernel (6.13) via the
equations given in Remark 6.10.

6.4 An Application

Definition 6.16 We say that a time series operator O has finite memory if there exists a
constant C <∞ such that

O(X)t = O(X{PrevX(t− C),+∞})t

for all X ∈ T and t ∈ T (O(X)).
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Corollary 6.17 A rolling time series function over horizon τ < ∞ is a time series operator
with finite memory.

Proof. The result follows immediately from Definition 5.9.
The following theorem shows that for linear convolution operators and a quite general class

of data-generating processes, the operator applied to the corresponding observation time series
provides the “best guess“ of the operator applied to the unobserved, data-generating process.

Theorem 6.18 Let (Xc
t : t ≥ 0) be a Lévy process, TX ∈ T with minTX ≥ 0 be a fixed

observation time sequence, and X = Xc[TX ] be the corresponding observation time series. Let
O be a linear convolution operator for sampling scheme σ = linear. If O has finite memory,
then

(i) the associated kernel µ(x, s) = xµT (s) satisfies µT ≡ 0 on (C,+∞) for some constant
C <∞,

(ii) and

E((Xc ∗ µ)t|X) = (SPlinear(X) ∗ µT )(t)

for C + minT (X) ≤ t ≤ maxT (X). In particular

E((Xc ∗ µ))t|X) = O(X)t (6.16)

for all t ∈ T (X) with t ≥ C + minT (X).

Proof.

(i) By the definition of a linear convolution operator,∫ ∞
0

X[t− s]linear dµT (s) = O(X)t

= O(X{PrevX(t− C),+∞})t

=

∫ t−PrevX(t−C)

0
X[t− s]linear dµT (s)

=

∫
[0,C]

X[t− s]linear dµT (s) +

∫
(C,t−PrevX(t−C)]

X[t− s]linear dµT (s)

for all X ∈ T and t ∈ T (X), where we used the finite memory property for the second
equation. Equivalently,∫

(C,∞)
X[t− s]linear dµT (s) =

∫
(C,t−PrevX(t−C)]

X[t− s]linear dµT (s) (6.17)

for all X ∈ T and t ∈ T (X). For each time series X ∈ T and time point t ∈ T (X), there
exists a time series Y with identical sample path and t− C ∈ T (X), which implies that
t−PrevY (t−C) = C. Hence, the right-hand side of (6.17) is always equal to zero, which
can only be the case if µT is identical to zero on (C,+∞).
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(ii) For a Lévy process Z, the conditional expectation E(Zt|Zs, Zr) for s ≤ t ≤ r is the linear
interpolation of (s, Zs) and (r, Zr) evaluated at time t. Hence, for C + minT (X) ≤ t ≤
maxT (X),

E((Xc ∗ µ))t|X) = E

(∫ ∞
0

dµ(Xc
t−s, s)

∣∣∣X) (6.18)

= E

(∫ C

0
Xc
t−s dµT (s) ds

∣∣∣X)
=

∫ C

0
E(Xc

t−s|X) dµT (s)

=

∫ C

0
X[t− s]linear dµT (s)

= (SPlinear(X) ∗ µT )(t)

where Fubini’s theorem was used to change the order of integration and the conditional
expectation. Additionally, if t ∈ T (X), then (6.18) simplifies further to

E((Xc ∗ µ))t|X) =

∫ C

0
dµ(X[t− s]linear, s)

= O(X)t.

However, (6.16) generally does not hold for nonlinear time series operators such as volatility
or correlation estimators. In these cases, the right-hand side of (6.16) requires correction terms
that depend on the exact dynamics of the data-generating process.

7 Multivariate Time Series

Multivariate data sets often consist of time series with different frequencies, and are thus
naturally treated as multivariate unevenly spaced time series, even if the observations of the
individual time series are reported at regular intervals. For example, macroeconomic data;
such as the gross domestic product (GDP), the rate of unemployment, and foreign exchange
rates; is released in a nonsynchronous manner and at vastly different frequencies (quarterly,
monthly, and essentially continuously, in case of the US). Moreover, the frequency of reporting
may change over time.

Many multivariate time series operators are natural extensions of their univariate counter-
parts, so the concepts of the prior sections require only a few modifications. If one is primarily
interested in the analysis of univariate time series, then this section may be skipped on a first
reading without detriment to the understanding of the rest of the paper.

Definition 7.1 For K ≥ 1, a K-dimensional unevenly spaced time series XK is a K-tuple
(XK

k : 1 ≤ k ≤ K) of univariate unevenly spaced time series XK
k ∈ T for 1 ≤ k ≤ K. T K is

the space of (real-valued) K-dimensional time series.

Definition 7.2 For K,M ≥ 1, a (K,M)-dimensional time series operator is a mapping O :
T K → T M , or equivalently, an M -tuple of mappings Om : T K → T for 1 ≤ m ≤M .
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The following two operators are helpful for extracting basic information from such objects.

Definition 7.3 (Subset Selection) For a multivariate time series XK ∈ T K and indices
(i1, . . . , iM ) with 1 ≤ ij ≤ K for j = 1, . . . ,M , we call

XK(i1, . . . , iM ) =

{
(XK

i1
, . . . , XK

iM
) if M ≥ 2,

XK
i1

if M = 1,

the subset (vector) time series of XK (for the indices (i1, . . . , iM )).

Definition 7.4 (Multivariate Sampling) For a multivariate time series XK ∈ T K , time
vector tK ∈ RK and sampling scheme σ ∈ {last, next, linear}, we call

XK [tK ]σ = (XK
k [tKk ]σ : 1 ≤ k ≤ K) (7.19)

the sampled value (vector) of XK at time (vector) tK .

Unless stated otherwise, we apply univariate time series operators element-wise to a mul-
tivariate time series XK . In other words, we assume that a univariate time series operator O,
when applied to a multivariate time series, is replaced by its natural multivariate extension.
For example, we interpret XK [t]last for t ∈ R as (XK

k [t]last : 1 ≤ k ≤ K) and call it the sampled
value (vector) of XK at time t. Similarly, L(XK , τ) for τ ∈ R equals (L(XK

k , τ) : 1 ≤ k ≤ K),
and so on. Of course, whenever there is a risk of confusion, we must explicitly define the
extension of a univariate time series operator to the multivariate case.

7.1 Structure

In Section 3 we already took a detailed look at the common structural features among univariate
time series operators. With very minor modifications (not shown here), that analysis is still
relevant to the multivariate case; however, additional properties are worth considering now.

7.1.1 Dimension Invariance

For many multivariate operators, the dimension of the output time series is either equal to one
(typically for data aggregations) or equal to the dimension of the input time series (typically
for data transformations).

Definition 7.5 A (K,M)-dimensional time series operator OK is dimension invariant if K =
M .

In particular, if a vector time series operator OK is the natural multivariate extension of a
univariate operator O, then the former is, by construction, dimension invariant.

7.1.2 Permutation Invariance

Many multivariate time series operators have a certain symmetry in the sense that they assume
no natural ordering among the input time series.
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Definition 7.6 A (K,K)-dimensional time series operator O is permutation invariant if

O(p(XK)) = p(O(XK))

for all permutations p : T K → T K and time series XK ∈ T K .

In particular, if a vector time series operator OK is the natural multivariate extension of a
univariate operator O, then the former is, by construction, permutation invariant.

7.1.3 Example

We will now end the discussion of structural features with a brief example.

Definition 7.7 (Merging) For X,Y ∈ T , X ∪ Y denotes the merged time series of X and
Y , where T (X ∪ Y ) = T (X) ∪ T (X) and

(X ∪ Y )t =

{
Xt if t ∈ T (X)
Yt if t /∈ T (X)

for t ∈ T (X ∪ Y ).

In particular, if both time series have an observation at the same time point, then the
observation value of the first time series takes precedence. Therefore, X ∪ Y and Y ∪ X are
generally not equal unless the observation times of X and Y are disjoint.

The operator that merges two time series is causal, timescale invariant, tick invariant (in
the sense that T (X ∪ Y ) = T (X) ∪ T (X)), shift invariant (in the sense that L(X ∪ Y, τ) =
L(X, τ) ∪ L(Y, τ)), homogeneous of degree d = 1 (in the sense that (aX) ∪ (aY ) = a(X ∪ Y )),
and neither dimension nor permutation invariant.

7.2 Multivariate Convolution Operators

Definition 7.8 A (K, 1)-dimensional (or K-dimensional) time series kernel µ is a signed
measure on (RK × R+, BK ⊗ B+) with∫ ∞

0
| dµ(f(s), s)| <∞

for all bounded piecewise linear functions f : RK+ → R.13

As in the univariate case, the integrability condition ensures that the value of a convolution
is well-defined and finite. In particular, the condition is satisfied if dµ(x, s) = g(x) dµT (s) for
some real function g : RK → R and finite signed measure µT on R+.

13A more general definition is possible, where µ is a signed measure on (RK × (R+)K , BK ⊗ (B+)K). For our
purposes, however, the simpler definition is sufficient.
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Definition 7.9 (Multivariate Convolution Operator) For a multivariate time series XK ∈
T K , K-dimensional kernel µ and sampling scheme σ, the convolution ∗µσ(XK) = XK ∗σ µ is a
univariate time series with

T (XK ∗σ µ) =
K⋃
k=1

T (XK
k ), (7.20)

(XK ∗σ µ)t =

∫ ∞
0

dµ(XK [t− s]σ, s), t ∈ T (XK ∗σ µ). (7.21)

If µ is absolutely continuous with respect to the Lebesgue measure on RK × R+, then (7.21)
can be written as

(XK ∗σ f)t =

∫ ∞
0

f(XK [t− s]σ, s) ds, t ∈ T (XK ∗σ µ),

where f is the density function of µ.

A K-dimensional convolution operator is a mapping of T K → T . More generally, a
(K,M)-dimensional convolution operator is an M -tuple of K-dimensional convolution opera-
tors (∗µ1σ , . . . , ∗µMσ ).

Note that a (K,K)-dimensional convolution operator is generally not equivalent to K one-
dimensional convolution operators. In the former case, each output time series depends on
all input time series; whereas in the latter case, each output time series depends only on the
corresponding input time series. In particular, the observation times of the output time series
of a (K,K)-dimensional convolution operator are the union of observation times of all input
time series, see (7.20).

7.3 Examples

This section gives examples of multivariate time series operators that can be expressed as
multivariate convolution operators.

Proposition 7.10 The arithmetic operators X+Y and XY in Definition 5.2 are multivariate
(specifically (2, 1)-dimensional) convolution operators with kernel µ(x, y, s) = (x+ y)δ0(s) and
µ(x, y, s) = xyδ0(s), respectively, for the vector time series (X,Y ) ∈ T 2.

Proof. For X,Y ∈ T and µ(x, y, s) = (x+ y)δ0(s), we have T ((X,Y ) ∗ µ) = T (X) ∪ T (X) by
the definition of a multivariate convolution. For t ∈ T ((X,Y ) ∗ µ),

((X,Y ) ∗ µ)t =

∫ ∞
0

(X[t− s]last + Y [t− s]last)δ0(s) ds

= X[t]last + Y [t]last,

and also, therefore, V ((X,Y ) ∗ µ) = V (X + Y ). The reasoning for the multiplication of two
time series is similar.
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Definition 7.11 (Cross-sectional Operators) For a function f : RK → R and sampling
scheme σ, the cross-sectional or (contemporaneous) time series operator Cσ(., f) : T K → T is
given by

T (Cσ(XK , f)) =
K⋃
k=1

T (XK
k ),

(Cσ(XK , f))t = f(XK [t]σ), t ∈ T (Cσ(XK , f))

for XK ∈ T K .

It is easy to see that a cross-sectional time series operator Cσ(., f) is a K-dimensional
convolution operator with kernel µf (xK , s) = f(xK)δ0(s).

Example 7.12 For a multivariate time series XK ∈ T K , we call Cσ(XK , f) with

(i) f(xK) = sum(xK) the cross-sectional sum of XK (also written sumC,σ(XK)),

(ii) f(xK) = avg(xK) the cross-sectional average of XK (also written avgC,σ(XK)),

(iii) f(xK) = min(xK) the cross-sectional minimum of XK (also written minC,σ(XK)),

(iv) f(xK) = max(xK) the cross-sectional maximum of XK (also written maxC,σ(XK)),

(v) f(xK) = max(xK)−min(xK) the cross-sectional range of XK (also written rangeC,σ(XK)),
and

(vi) f(xK) = quant(xK , q) the cross-sectional q-quantile of XK (also written quantC,σ(XK , q)).

It is easy to see that arithmetic and cross-sectional time series operators are consistent with
each other. For example, sumC,σ(XK) equals XK

1 + . . .+XK
K for all K ≥ 1 and XK ∈ T K .

Contemporaneous time series operators, such as the ones in Example 7.12, are useful for
summarizing the behavior of high-dimensional time series. For example, a common ques-
tion among economists is how the distribution of household income within a certain country
changes over time. If XK denotes the time series of individual incomes from a panel data set,
quantC(XK , 0.8)/ quantC(XK , 0.2) is the time series of the inter-quintile income ratio. Simi-
larly, in a medical study, the dispersion of a certain measurement across subjects as a function
of time might be of interest.

8 Moving Averages

Moving averages - with exponentially declining weights or otherwise - are used to extract the
average value of a time series over a certain time horizon; for example, to smooth out noisy
observation values. Moving averages are very similar to kernel smoothing methods, see Wand
and Jones (1994) and ?, except that they use only past observations and are therefore causal
time series operators.

For equally spaced time series data there is only one way of calculating simple moving
averages (SMAs) and exponential moving averages (EMAs), and the properties of such linear
filters are well understood. For unevenly spaced data, however, there are multiple alternatives
(for example, due to the choice of the sampling scheme), all of which may be sensible depending
on the underlying data-generating process of a given time series and the desired application.
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Definition 8.1 A convolution operator ∗µσ, associated with a kernel µ and sampling scheme
σ ∈ {last, next, linear}, is a moving average operator if

µ(x, s) = xµT (s) = xdF (s), (8.22)

where µT is a probability measure on (R+,B+) and F its distribution function. We call µT
(and sometimes µ itself) a moving average kernel.

Based on the remarks following Definition 2.4, we know that the first observation value of
a moving average is equal to the first observation value of the input time series. Moreover, the
moving average of a constant time series is identical to the input time series.

Theorem 8.2 Fix a sampling scheme σ and restrict attention to the set of causal, shift- and
tick-invariant time series operators. The class of moving average operators coincides with the
class of linear time series operators in the aforementioned set with (i) O(X) ≥ 0 for all X ∈ T
with X ≥ 0, and (ii) O(X) = X for all constant time series X ∈ T .

Proof.

=⇒ It immediately follows from Definition 8.1 and Proposition 4.5 that a moving average
operator satisfies the specified conditions.

⇐= By Theorem 6.13, the kernel associated with such a time series operator O is of the form
µ(x, s) = xµT (s) for some finite signed measure µT on (R+,B+). Because O(X) ≥ 0 for
all X ∈ T with X ≥ 0, it follows from a simple measure-theoretic argument that µT is a
positive measure. Furthermore, because O(X) = X for all constant time series X ∈ T ,
it follows that∫ ∞

0
dµT (s) = 1,

showing that µT is a probability measure on (R+,B+) and, therefore, that O is a moving
average operator.

For a moving average kernel µT , associated cumulative distribution function F , and X ∈ T ,

MAlast(X,µT ) = MAlast(X,F ) = X ∗ µ,
MAnext(X,µT ) = MAnext(X,F ) = X ∗next µ,
MAlinear(X,µT ) = MAlinear(X,F ) = X ∗linear µ

(8.23)

with µ(x, s) = xµT (s) = xdF (s) are three different moving averages of X. If X is non-
decreasing, then

MAnext(X,F )t ≥ MAlinear(X,F )t ≥ MAlast(X,F )t (8.24)

for all t ∈ T (X), because X[t]next ≥ X[t]linear ≥ X[t]last for all t ∈ R for a non-decreasing time
series.

28



8.1 Simple Moving Averages

Definition 8.3 For time series X ∈ T , we define three versions of the simple moving average
(SMA) of length τ > 0. For t ∈ T (X),

(i) SMAlast(X, τ)t = 1
τ

∫ τ
0 X[t− s]last ds,

(ii) SMAnext(X, τ)t = 1
τ

∫ τ
0 X[t− s]next ds,

(iii) SMAlinear(X, τ)t = 1
τ

∫ τ
0 X[t− s]linear ds,

where in all cases the observation times of the input and output time series are identical.

The simple moving averages SMAlast, SMAnext, and SMAlinear are moving average operators
in the sense of Definition 8.1. Specifically,

SMAlast(X, τ) = MAlast(X,µT )
SMAnext(X, τ) = MAnext(X,µT )
SMAlinear(X, τ) = MAlinear(X,µT )

with µT (t) = 1
τ 1{0≤t≤τ}.

The first SMA can be used to analyze discrete observation values; for example, to calculate
the average FED funds target rate14 over the past three years. In such a case, it is desirable
to weight each observation value by the amount of time it remained unchanged. The rolling
average is ideal for analyzing discrete events; for example, calculating the average number of
casualties per deadly car accident over the past twelve months, or determining the average
number of IBM common shares traded on the NYSE per executed order during the past 30
minutes. The SMAlinear can be used to estimate the rolling average value of a discretely-
observed continuous-time stochastic processes, with observation times that are independent of
the observation values, see Theorem 6.18. Finally, the SMAnext is useful for certain trend and
return calculations, see Section 8.3.

That said, the values of all SMAs will generally be quite similar as long as the moving
average time horizon τ is considerably larger than the spacing of observation times. The type
of moving average used (for example, SMA vs. EMA) and the moving average time horizon
will usually have a much greater influence on the outcome of a time series analysis.

Proposition 8.4 For all X ∈ T ,

lim
τ↘0

SMAlinear(X, τ)t = lim
τ↘0

SMAnext(X, τ)t = Xt

for all t ∈ T (X), while

lim
τ↘0

SP(SMAlast(X, τ))(t) = SP(B(X))(t)

for all t ∈ R.

14The FED funds target rate is the desired interest rate (by the Federal Reserve) at which depository in-
stitutions (such as a savings bank) lend balances held at the Federal Reserve to other depository institutions
overnight. See www.federalreserve.gov/fomc/fundsrate.htm for details.
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We will now end our discussion of SMAs by illustrating a connection to the corresponding
operator for equally spaced data.

Proposition 8.5 (Equally spaced time series) If X ∈ T is an equally spaced time series
with observation time spacings equal to some constant c > 0, and if the moving average length
τ is an integer multiple of c, then

rolling avg(X, τ)t = SMAnext(X, τ)t

for all t ∈ T (X) with t ≥ minT (X) + τ − c. In other words, the rolling average and SMAnext

are identical after an initial ramp-up period of length τ − c.

Proof. Because τ = K∆t for some integer K, for all t ∈ T (X) with t ≥ minT (X) + τ − c we
have

SMAnext(X, τ)t =
1

τ

∫ τ

0
X[t− s]next ds

=
Xt∆t(X)t +Xt−∆t∆t(X)t−∆t + . . .+Xt−∆t(K−1)∆t(X)t−∆t(K−1)

τ

=
Xt +Xt−∆t + . . .+Xt−∆t(K−1)

K
= avg{Xs : s ∈ [t, t− τ) ∩ T (X)}
= rolling avg(X, τ)t.

See Eckner (2017) for an efficient O(N(X)) implementation in the programming language
C of simple moving averages and various other time series operators for unevenly spaced data.

8.2 Exponential Moving Averages

This section discusses exponential moving averages, also known as exponentially weighted
moving averages. We use the former name in this paper, because the associated weights for
unevenly spaced time series are defined only implicitly, via a kernel, as opposed to explicitly,
as they are for equally spaced time series.

Definition 8.6 For a time series X ∈ T , we define three versions of the exponential moving
average (EMA) of length τ > 0. For t ∈ {t1, . . . , tN(X)},

(i) EMAlast(X, τ)t = 1
τ

∫∞
0 X[t− s]laste

−s/τ ds,

(ii) EMAnext(X, τ)t = 1
τ

∫∞
0 X[t− s]nexte

−s/τ ds,

(iii) EMAlinear(X, τ)t = 1
τ

∫∞
0 X[t− s]lineare

−s/τ ds,

where in all cases the observation times of the input and output time series are identical.

The exponential moving averages EMAlast, EMAnext, EMAlinear are moving average oper-
ators in the sense of Definition 8.1. Specifically,

EMAlast(X, τ) = MAlast(X,µT )
EMAnext(X, τ) = MAnext(X,µT )

EMAlinear(X, τ) = MAlinear(X,µT )

with µT (s) = 1
τ e
−s/τ .
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Proposition 8.7 For all X ∈ T ,

lim
τ↘0

EMAlinear(X, τ)t = lim
τ↘0

EMAnext(X, τ)t = Xt

for all t ∈ T (X), while

lim
τ↘0

SP(EMAlast(X, τ))(t) = SP(B(X))(t)

for all t ∈ R.

As the following result shows, applying the usual EMA for equally spaced data to unevenly
spaced data implicitly applies next-point interpolation to the time series, something that,
depending on the application, may not be desirable.

Proposition 8.8 For all X ∈ T and τ > 0,

EMAnext(X, τ)t =

{
Xt1 if t = t1,

(1− e−∆tn/τ )Xtn + e−∆tn/τ EMAnext(X, τ)tn−1 if t = tn > t1

for t ∈ T (X).

Proof. EMAnext(X, τ)t1 = Xt1 , because X[t1 − s]next = Xt1 for all s > 0, showing the result
for n = 1. For 1 < n ≤ N(X):

EMAnext(X, τ)tn =
1

τ

∫ ∞
0

X[tn − s]nexte
−s/τ ds

=
1

τ

∫ ∆tn

0
X[tn − s]nexte

−s/τ ds+
1

τ

∫ ∞
∆tn

X[tn − s]nexte
−s/τ ds

= Xtn(1− e−∆tn/τ )

+ e−∆tn/τ

∫ ∞
∆tn

X[(tn −∆tn)− (s−∆tn)]nexte
−(s−∆tn)/τ ds

= Xtn(1− e−∆tn/τ ) + e−∆tn/τ EMAnext(X, τ)tn−1 .

It is easy to show that EMAlast can also be calculated recursively. Specifically,

EMAlast(X, τ)t =

{
Xt1 if t = t1,

(1− e−∆tn/τ )Xtn−1 + e−∆tn/τ EMAlast(X, τ)tn−1 if t = tn > t1

for t ∈ T (X), which is the EMAnext of the original time series with lagged observation values.
Finally, Müller (1991) showed that the EMAlinear can also be calculated recursively:

Proposition 8.9 For X ∈ T and τ > 0,

EMAlinear(X, τ)t1 = Xt1 ,

EMAlinear(X, τ)tn = e−∆tn/τ EMAlinear(X, τ)tn−1 +Xtn(1− ω(τ,∆tn))

+Xtn−1(ω(τ,∆tn)− e−∆tn/τ ),

for tn ∈ T (X) with n ≥ 2, where

ω(τ,∆tn) =
τ

∆tn
(1− e−∆tn/τ ).

In particular, ω(τ,∆tn) ≈ 0 for τ � ∆tn in which case EMAlinear(X, τ)tn ≈ Xtn.
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See Eckner (2017) for an efficient O(N(X)) implementation in the C and R programming
language of exponential moving averages and various other time series operators for unevenly
spaced data.

8.3 Continuous-Time Analog

Calculating moving averages in discrete time requires us to choose a of the sampling scheme.
In contrast, there is no such choice when calculating in continuous time, a fact which allows
succinct illustration of certain concepts.

Definition 8.10 Let X̃ : R→ R be a function satisfying suitable integrability conditions. For
τ > 0 we call the function SMAlast(X̃, τ) : R→ R defined by

SMAlast(X̃, τ)t =
1

τ

∫ τ

0
X̃t−s ds, t ∈ R,

the simple moving average of X̃ (with length τ), and EMAlast(X̃, τ) : R→ R defined by

EMAlast(X̃, τ)t =
1

τ

∫ ∞
0

X̃t−se
−s/τ ds, t ∈ R, (8.25)

the exponential moving average of X̃ (with length τ).

Unless stated otherwise, we apply a time series operator to a real-valued function using its
natural analog. For example, L(X̃, τ) for τ ∈ R is the real-valued function with L(X̃, τ)t =
X̃t−τ for all t ∈ R. Of course, whenever there is a risk of confusion, we must explicitly define
this extension.

With the SMA and EMA in continuous time established, we are ready to show several
fundamental relationships between the trend measures and returns of a time series.

Theorem 8.11 Let X̃ : R → R be a differentiable function satisfying suitable integrability
conditions. For τ > 0 and t ∈ R,

X̃t − X̃t−τ
τ

= SMAlast(X̃
′, τ)t (8.26)

and

1

τ
log

(
X̃t

X̃t−τ

)
= SMAlast

(
log(X̃)′, τ

)
t
, (8.27)

if X̃ > 0, where X̃ ′ denotes the derivative of X̃.

Proof. By the fundamental theorem of calculus

X̃t − X̃t−s =

∫ s

0
X̃ ′t−z dz

log(X̃t)− log(X̃t−s) =

∫ s

0
log(X̃)′t−z dz
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for s ∈ R. Hence, (8.26) and (8.27) follow from the definition of the simple moving average.
For an unevenly spaced time series X ∈ T (in discrete time),

1

τ
retroll

abs(X, τ)t =
Xt −X[t− τ ]

τ
≈ SMAnext

(
∆X

∆t(X
, τ

)
t

and

1

τ
retroll

log (X, τ)t =
1

τ
log

(
Xt

X[t− τ ]

)
≈ SMAnext

(
∆ log(X)

∆t(X)
, τ

)
for t ∈ T (X) and τ > 0 can be used as an approximation of (8.26) and (8.27), respectively. In
some cases, the approximation holds exactly. For example, if t − τ ∈ T (X), then t = tn and
t− τ = tn−k for some 1 ≤ k < n ≤ N(X), so that

SMAnext

(
∆X

∆t(X)
, τ

)
t

=
1

τ

(
∆Xtn∆tn

∆tn
+ . . .+

∆Xtn−k+1
∆tn−k+1

∆tn−k+1

)
(8.28)

=
1

τ
(∆Xtn + ∆Xtn−1 + . . .+ ∆Xtn−k+1

)

=
Xtn −Xtn−τ

τ

=
Xt −X[t− τ ]

τ
.

A similar result holds for exponential moving averages

Theorem 8.12 Let X̃ : R → R be a differentiable function satisfying suitable integrability
conditions. For τ > 0 and t ∈ R,

X̃t − EMAlast(X̃, τ)t
τ

= EMAlast(X̃
′, τ)t (8.29)

where X̃ ′ denotes the derivative of X̃.

Proof. The result can again be shown using the fundamental theorem of calculus, but the
calculation is tedious. Alternatively, partial integration gives

EMAlast(X̃
′, τ)t =

1

τ

∫ ∞
0

X̃ ′t−ze
−z/τdz

= −1

τ
X̃t−ze

−z/τ
∣∣∣∣z=∞
z=0

− 1

τ2

∫ ∞
0

X̃t−ze
−z/τ dz

=
1

τ
X̃t −

1

τ
EMAlast(X̃, τ)t.

For an unevenly spaced time series X ∈ T (in discrete time),

Xt − EMAlast(X, τ)t
τ

≈ EMAnext

(
∆X

∆t(X)
, τ

)
t

can be used as an approximation of (8.29).
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Appendices

A Proof of Theorem 6.12

We proceed by breaking down the proof into three separate results.

Lemma A.1 Let O be a shift-invariant time series operator that is linear for sampling scheme
σ. There exists a function hσ : SPσ → R (as opposed to SPσ → SPσ in Lemma 6.11) such that

SPσ(O(X))(t) = hσ(SPσ(L(X,−t))) (A.30)

for all time series X ∈ T and all t ∈ R. In other words, the sample path of the output
time series depends only on the sample path of the input time series, and this dependence is
shift-invariant.

Proof. By Lemma 6.5 and the shift-invariance of O,

SPσ(O(X))(t− τ) = SPσ(L(O(X), τ))(t)

= SPσ(O(L(X, τ)))(t)

for all X ∈ T and t, τ ∈ R. Setting t = 0 and τ = −t gives

SPσ(O(X))(t) = SPσ(O(L(X,−t)))(0) (A.31)

for all t ∈ R. According to Lemma 6.11 there exists a function gσ : SPσ → SPσ such that

SPσ(O(L(X,−t))) = gσ(SPσ(L(X,−t))). (A.32)

Combining (A.31) and (A.32) yields

SPσ(O(X))(t) = SPσ(O(L(X,−t)))(0) = gσ(SPσ(L(X,−t)))(0).

Hence, the desired function hσ is given by hσ(X) = gσ(x)(0) for x ∈ SPσ.
For operators that are bounded, even more can be said.

Theorem A.2 Let O be a bounded and shift-invariant time series operator that is linear for
sampling scheme σ. Then there exists a finite signed measure µT on (R,B) such that

SPσ(O(X))(t) =

∫ +∞

−∞
SPσ(X)(t− s) dµT (s) (A.33)

for all t ∈ R, or equivalently

SPσ(O(X)) = SPσ(X) ∗ µT ,

where “∗“ denotes the convolution of a real function with a Borel measure.
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Proof. By Lemma A.1 there exists a function hσ : SPσ → R such that

SPσ(O(X))(t) = hσ(SPσ(L(X,−t)))

= hσ(SPσ(X̃))

= SPσ(O(X̃))(0),

where X̃ = L(X,−t). Furthermore, by Lemma 6.5 (setting t = −s and τ = −t)

SPσ(X)(t− s) = SPσ(X̃)(−s).

Hence, it suffices to show (A.33) for t = 0, or equivalently, that there exists a finite signed
measure µT on (R,B) such that

hσ(SPσ(X)) =

∫ +∞

−∞
SPσ(X)(−s) dµT (s) (A.34)

for all X ∈ T .
Let us for a moment consider only the last-point and next-point sampling scheme. Define the
set of indicator time series Ia,b ∈ T for −∞ ≤ a ≤ b <∞ by

T (Ia,b) =

{
(a− 1, a, b) if a < b,

(A) if a = b,

and

V (Ia,b) =

{
(0, 1, 0) if a < b,

(0) if a = b.

The sample path of an indicator time series is given SPσ(Ia,b)(t) = 1[a,b)(t) for t ∈ R, which
gives these time series their name. For disjoint intervals [ai, bi) with ai ≤ bi for i ∈ N, we
define

µT

(⋃
i

[ai, bi)

)
= hσ

(
SPσ

(∑
i

I(−bi,−ai)

))
.

Because O and therefore hσ are bounded,

µT

(⋃
i

[ai, bi)

)
= hσ

(
SPσ

(∑
i

I(−bi,−ai)

))

≤M

∥∥∥∥∥SPσ

(∑
i

I(−bi,−ai)

)∥∥∥∥∥
SP

= M <∞.

Combined with the linearity of O we have that µT is a finite countably additive set function
on (R,A) where

A =

{⋃
i

[ai, bi) : −∞ ≤ ai ≤ bi <∞ for i ∈ N

}
.
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By Carathéodory’s extension theorem, there exists a unique extension of µT (for simplicity,
also called µT ) to (R,B). We are left to show that µT satisfies (A.34). To this end, note that
the sample path of each time series X ∈ T can be written as a weighted sum of the sample
paths of indicator time series. For example, in the case of last-point sampling,

SP(X) =

N(X)∑
i=0

Xti SPσ(Iti,ti+1)

where we define t0 = −∞, Xt0 = Xt1 , and tN(X)+1 = +∞. Using the linearity of O, and
therefore hσ,

hσ(SP(X)) = hσ

N(X)∑
i=0

Xti SP(Iti,ti+1)


=

N(X)∑
i=0

Xtihσ(SP(Iti,ti+1))

=

N(X)∑
i=0

XtiµT ([−ti+1,−ti))

=

N(X)∑
i=0

XtiµT ([0− ti+1, 0− ti)).

The last expression equals∫ +∞

−∞
X[0− s]last dµT (s) = (SP(X) ∗ µT )(0),

see Remark 6.10. Thus, we have shown the desired result for last-point sampling, and the final
steps of the proof for next-point sampling are completely analogous.
For sampling with linear interpolation, the proof is complicated by the fact that the sample
path SPlinear(Ia,b) of an indicator function is not an indicator function but rather a triangular
function. However, a given step function can be approximated arbitrarily close by a sequence
of trapezoid functions (which are elements of SPlinear), and the measure µT can be defined
as the limiting value of hσ when applied to this sequence of trapezoid functions. The rest of
the proof then proceeds as above, but is notationally more involved. Alternatively, one can
invoke a version of the Riesz representation theorem. Specifically, the sample path SPlinear(X)
of each time series X ∈ T is constant outside an interval of finite length and the space SPlinear

can therefore be embedded in the space of continuous real functions that vanish at infinity.
A version of the Riesz representation theorem shows that bounded, linear functionals on the
latter space can be written as integrals with respect to a finite, signed measure; see Arveson
(1996), Theorem 5.2.
Proof of Theorem 6.12. By Theorem A.2 and tick-invariance, there exists a finite signed
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measure µT on (R,B) such that

O(X)t = SPσ(O(X))(t)

=

∫ +∞

−∞
SPσ(X)(t− s) dµT (s)

=

∫ +∞

−∞
X[t− s]σ dµT (s),

for all t ∈ T (X) = T (O(X)). Because O is causal,

O(X)t = O(X + Y )t

for all time series Y ∈ T with SPσ(Y )(s) = 0 for s ≤ t, which implies

0 =

∫ +∞

−∞
Y [t− s]σ dµT (s)

= 0 +

∫ 0

−∞
Y [t− s]σ dµT (s)

for all such time series. Hence, µT is identical to the zero measure on (−∞, 0), and µT can be
restricted to (R+,B+), which makes O a convolution operator.

B Frequently Used Notation

0n the null vector of length n
∗µσ the convolution operator associated with signed measure µ and sampling scheme σ
B the backshift operator, see Definition 2.7
B the Borel σ-algebra on R
B+ the Borel σ-algebra on R+

L the lag operator, see Definition 2.7
D the delay operator, see Definition 2.7
N(X) the number of observations of time series X, see Definition 2.2
Tn the space of strictly increasing time sequences of length n, see Definition 2.1
T the space of strictly increasing time sequences, see Definition 2.1
Rn n-dimensional Euclidean space
R+ the interval [0,∞)
σ one of three sampling schemes, see Definition 2.4 and 2.6
SPσ(X) the sample path of a time series X with sampling scheme σ, see Definition 6.1
SPσ the space of time series sample paths for sampling scheme σ, see Definition 6.1
Tn the space of time series of length n, see Definition 2.1
T the space of unevenly spaced time series, see Definition 2.1
T K the space of K-dimension time series, see Definition 7.1
T (X) the vector of observation times of a time series X, see Definition 2.2
V (X) the vector of observation values of a time series X, see Definition 2.2
X[t]σ the sampled value of time series X at time t with sampling scheme σ, see Def. 2.4
Xc[TX ] the observation time series of a continuous-time stochastic process Xc, see Def. 2.6
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