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Abstract

This paper presents computational techniques that make a certain class of fully
dynamic intensity-based models for portfolio credit risk, along the lines of Duffie
and Gârleanu (2001) and Mortensen (2006), just as computationally tractable as
the Gaussian copula model. For this model, we improve the fit to tranche spreads
by a factor of around three, by allowing for a more flexible correlation structure,
and by accounting for market frictions due to bid-offer spreads. The resulting
model can be used to hedge a wide range of risks in the credit market, such as the
risk of changes in correlations, volatilities, or idiosyncratic default risk.
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1 Introduction

We present computational techniques that make a fully dynamic, doubly stochastic,
intensity-based model1 for the joint behavior of corporate default times, along the lines
of Duffie and Gârleanu (2001) and Mortensen (2006), just as tractable as the static
Gaussian copula model (Li (2000)). Both model implementations have the recursive
calculation of the conditional (on the common factor) portfolio loss distribution, using an
algorithm due to Andersen, Sidenius, and Basu (2003), as the computational bottleneck.2

In our implementation of this intensity-based model, the “ASB”-algorithm accounts for
65% of the total computing time when pricing credit tranches. A modified version of
the algorithm that avoids calculating the probability of extremely unlikely events, still
accounts for 38% of the total computing time. Credit tranches can be priced in less
than one second on a single-processor workstation,3 while calibration of the model for a
single day takes only a few minutes, given the fitted parameters from the previous day.

A second emphasis of this paper is to improve upon the model fit in Mortensen (2006)
by a factor of around three, by allowing for a more flexible correlation structure, and
by accounting for market frictions due to bid-offer spreads. We also show that a rich
class of recovery rate scenarios can be incorporated into the model in a computationally
tractable manner. The resulting model can be used to hedge a wide range of risks in the
credit market, such as the risk of changes in spread volatilities, or idiosyncratic default
risk - effects that cannot be considered in the inherently static copula model.

A tractable dynamic model for portfolio credit risk should be of interest to a variety
of researchers and practitioners. Although the Gaussian copula model is an industry
standard, its theoretical foundations such as implied default and credit spread dynamics
are often quite unrealistic. Tranches of CDOs usually cannot be priced consistently using
a single correlation parameter, which has given rise to the base correlation framework,
even though it does not guarantee arbitrage-free prices. For these reasons, various
authors have considered extensions such as the Clayton, Student-t, double-t, or Marshall-
Olkin copulas. See Burtschell, Gregory, and Laurent (2005) for a comparative analysis.
Nevertheless, current models of this type cannot capture the dynamics of credit spreads
and are therefore unsuitable analyzing certain risk dimensions (such as mark-to-market
risk and collateral agreements4) and for pricing securities whose payout depends on credit

1Standard references on intensity-based models, sometimes called reduced-form models, include Jar-
row and Turnbull (1995), Lando (1998), and Duffie and Singleton (1999).

2Jackson, Kreinin, and Ma (2007) found this algorithm to be preferable to Fourier based convolution
methods, as long as the portfolio contains only a couple of hundred issuers. From talking with prac-
titioners we learned that the recursive Andersen-Sidenius-Basu step currently is indeed the preferred
method for the one-factor Gaussian copula model.

3This computing time applies to a hybrid C/Matlab model implementation on a computer with
1.86Ghz Intel R© Celeron R© processor with 1GB of RAM. A pure C implementation would likely be two
to three times faster.

4Incorrect assessment of the later type of risk triggered a liquidity crisis at American In-
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spread dynamics (such as options on CDS indices). On the other hand, these features
can be incorporated in a natural way into an intensity-based framework of credit risk.
Due to the rapid growth of the market for credit derivatives over the past decade,
intensity-based models of credit risk are currently an active area of research. See for
example Duffie and Gârleanu (2001), Giesecke and Goldberg (2005), Errais, Giesecke,
and Goldberg (2006), Joshi and Stacey (2006), Mortensen (2006), Papageorgiou and
Sircar (2008), and Longstaff and Rajan (2008).

In our analysis we rely heavily on the doubly stochastic assumption for default inten-
sities, so that correlation of default intensities is the only mechanism by which correlation
of default times can arise. While computationally convenient, it is important to keep in
mind that this framework rules out some important other channels of default correlation,
such as unobservable risk-factors (frailty) and contagion. See, for example, Das, Duffie,
Kapadia, and Saita (2007), Duffie, Eckner, Horel, and Saita (2009), and Ding, Giesecke,
and Tomecek (2008). However, for alternative bottom-up specifications that relax the
doubly-stochastic assumption, computational tractability may an issue. As opposed to
a bottom up model as ours, where the primitives are the intensity processes of the indi-
vidual firms, top-down models directly specify the portfolio loss process in terms of an
intensity process. Such models more easily allow the relaxation of the doubly stochastic
assumption while retaining computational tractability. However, additional non-trivial
steps are required to calibrate the single names in the portfolio.

The rest of the paper is organized as follows. The remainder of this Section describes
some of the most common credit derivatives and the data sources used for our analysis.
Section 2 introduces the model for risk-neutral default times, while Section 3 presents
various computational techniques. Section 4 present the pricing of credit derivatives in
this setup and the model calibration algorithm. Section 5 examines the model fit at a
fixed point in time and discusses hedging of credit tranches. Section 6 concludes and
suggests possible model extensions.

1.1 Credit Derivative Contracts

A credit derivative is a contract whose payoff is linked to the creditworthiness of one or
more obligations. This section summarizes the features of the three most common types
for corporate credit risk.

Credit Default Swaps. By far the most common credit derivative is the credit
default swap (CDS). It is an agreement between a protection buyer and a protection
seller, whereby the buyer pays a periodic fee in return for a contingent payment by the
seller upon a credit event, such as bankruptcy or “failure to pay”, of a reference entity.

ternational Group in September 2008 with subsequent rescue by the Federal Reserve. See
http://www.federalreserve.gov/newsevents/press/other/20080916a.htm for details.
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The contingent payment usually replicates the loss incurred by a creditor of the reference
entity in the event of its default. See, for example, Duffie (1999).

Credit Indices. A credit index contract allows an investor to either buy or sell
protection on a basket of reference entities, and therefore closely resembles a portfo-
lio of CDS contracts. For example, the CDX.NA.IG (for CDS index, North America,
Investment Grade) contract provides equally-weighted default protection on 125 North
American investment-grade rated issuers. For a more detailed description see the ’Credit
Derivatives Handbook’ (2006) by Merrill Lynch.

Credit Tranches. A credit tranche allows an investor to gain a specified exposure
to the credit risk of the underlying portfolio, while in return receiving periodic coupon
payments. Losses due to credit events in the underlying portfolio are allocated first to
the lowest tranche, known as the equity tranche, and then to successively prioritized
tranches. The risk of a tranche is determined by the attachment point of the tranche,
which defines the point at which losses in the underlying portfolio begin to reduce the
tranche notional, and the detachment point, which defines the point at which losses in
the underlying portfolio reduce the tranche notional to zero. The buyer of protection
makes coupon payments on the notional amount of the remaining size of the tranche,
which is the initial tranche size less losses due to defaults. This structure is illustrated
in Table 1 for the CDX.NA.IG index.

Tranche Attachment Point Detachment Point Quote Convention
Equity 0% 3% 500 bps running + upfront
Junior Mezzanine 3% 7% all running
Mezzanine 7% 10% all running
Senior Mezzanine 10% 15% all running
Senior 15% 30% all running
Super Senior 30% 100% all running

Table 1: Tranche structure of the CDX.NA.IG index, which has 125 equally weighted North-American

investment-grade issuers in the underlying portfolio.

The coupon payments for these three contracts are typically made quarterly, on the
20th of March, June, September, and December, unless this date is a holiday, in which
case the payment is made on the next business day. If a contract is entered in between
two such dates, the buyer of protection receives from the seller of protection the accrued
premium since the last coupon date.
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1.2 Data Sources

Citi and Morgan Stanley provided 5, 7, and 10-year CDX.NA.IG index and tranche bid-
and ask-spreads. Markit provided 5, 7, and 10-year CDX.NA.IG tranche mid-market
spreads, and 1, 5, 7, and 10-year CDS mid-market spreads for the CDX.NA.IG members.

We used 3-month, 6-month, 9-month, 1-year, 2-year, ..., 10-year US LIBOR swap
rates to estimate the discount function Bt (T ) at each point in time t. Specifically, for
these standard maturities we used swap rates from the Bloomberg system, while for
non-standard maturities we used cubic-spline interpolation of implied forward rates to
determine the spot rate. Swap rates are widely regarded as the best measure of funding
costs for banks - the biggest participant in the market for synthetic credit derivatives -
over various time horizons.

2 Model Setup

This section describes a model for the joint distribution of various obligor default times
under a risk-neutral probability measure. To this end, we fix a filtered probability space
(Ω,F , (Ft) ,P) satisfying the usual conditions.5 Up to purely technical conditions,6 the
absence of arbitrage implies the existence of an equivalent martingale measure Q, such
that the price at time t of a security paying an amount Z at a stopping time τ > t is
given by

Vt = EQ
t

(
e−

∫ τ

t
rsdsZ

)
,

where r is the short-term interest rate and EQ
t denotes expectation under Q, conditional

on all available information up to time t.
Under the equivalent martingale measure Q, for each individual firm i, a default time

τ i is modeled using Cox processes, also known as doubly stochastic Poisson processes.
See for example Lando (1998) and Duffie and Singleton (2003). Specifically, the default
intensity of obligor i is a non-negative real-valued progressively measurable stochastic
process, which will be defined below. Conditional on the intensity path {λit : t ≥ 0}, the
default time τ i is taken to be the first jump time of an inhomogeneous Poisson process
with intensity λi. In particular, the default times of any set of firms are conditionally
independent given the intensity paths, so that correlation of default intensities is the
only mechanism by which correlation of default times can arise.

For t > s, risk-neutral survival probabilities can be calculated via

Q (τ i > t | Fs) = EQ
s (Q (τ i > t | {λit : t ≥ 0} ∪ Fs)) = 1{τ i>s}E

Q
s

(
e−

∫ t

s
λiudu

)
, (1)

5For a precise mathematical definition not offered here, see Karatzas and Shreve (2004), and Protter
(2005).

6See Harrison and Kreps (1979), Harrison and Pliska (1981), and Delbaen and Schachermayer (1999).
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where the expectation is taken over the distribution of possible intensity paths. The
large and flexible class of affine processes allows one to calculate (1) either explicitly or
numerically quite efficiently. See Duffie, Pan, and Singleton (2000).

Due to their computational tractability, we use basic Affine Jump Diffusions (AJD)
as the building block for the default intensity model. Specifically, we call a stochastic
process Z a basic AJD under Q if

dZt = κ(θ − Zt) dt+ σ
√
Zt dBt + dJt, Z0 ≥ 0, (2)

where under Q, (Bt)t≥0 is a standard Brownian motion, and (Jt)t≥0 is an independent
compound Poisson process with constant jump intensity l and exponentially distributed
jumps with mean µ. For the process to be well defined, we require that κθ ≥ 0 and
µ ≥ 0. Note that (2) is a special case of more general affine processes, see for example
Duffie, Filipović, and Schachermayer (2003).

Basic AJDs are especially attractive for modeling default times, since both the mo-
ment generating function

m (q) = EQ
(
eq

∫ t

0
Zsds
)
, q ∈ R, (3)

and the characteristic function

ϕ (u) = EQ
(
eiu

∫ t

0
Zsds
)
, u ∈ R, (4)

are known in closed-from, see Appendix A for details. In particular, if Z is the default
intensity of a certain obligor, setting q = −1 in (3) allows one to explicitly calculate the
obligor’s survival probability (1). In addition, the characteristic function (4) allows one
to calculate the density of an integrated basic AJD

Z̃t ≡
∫ t

0

Zsds

by Fourier inversion, as discussed in Section 3.2 below.

2.1 Risk-Neutral Default Intensities

We now make precise the multivariate model of default times. The risk-neutral default
intensity of obligor i is

λit = Xit + aiYt, (5)

with idiosyncratic component Xi and systematic component Y . As in Duffie and
Gârleanu (2001) and Mortensen (2006), under Q, X1, . . . , Xm and Y are independent
basic AJDs, with

dXit = κi(θi −Xit)dt+ σi

√
Xit dB

(i)
t + dJ

(i)
t (6)

dYt = κY (θY − Yt)dt+ σY

√
Yt dB

(Y )
t + dJ

(Y )
t . (7)
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Here, J (Y ) and J (i) have jump intensities lY and li, and jump size means µY and µi, re-
spectively. Hence, jumps can either be firm-specific or market-wide. Duffie and Gârleanu
(2001) and Mortensen (2006) found the latter type of jumps in default intensities to be
crucial for explaining the spreads of senior CDO tranches, which are heavily exposed
to tail risk events. Schneider, Sögner, and Veža (2009) examined the time series of 282
credit default swap spreads and found evidence for mainly positive jumps in default
intensities.

2.1.1 Parameter Restrictions

This section discusses restrictions on the parameters in (6) and (7) that (i) make the
model identifiable and (ii) reduce, for parsimony, the number of free parameters. We
also point out the differences between our model setup and those of Duffie and Gârleanu
(2001) and Mortensen (2006). For a discussion about the suitability of such restrictions
see Feldhütter (2007).

Model Identifiability. The restriction

1

m

m∑

i=1

ai = 1

is imposed to ensure identifiability of the model.7

Parsimony. Our model specification is relatively general with 5m+5 default intensity
parameters and m + 1 initial factor values. Since we are especially interested in the
economic interpretation of the parameters, we favor a parsimonious model which is
nevertheless flexible enough to closely fit tranches spreads. First, we take the common
factor loading ai of each obligor i to be equal to the obligor’s 5-year CDS spread divided
by the average 5-year CDS spread of the current credit index members, that is

ai =
ccdsi,t,M

Avgi
(
ccdsi,t,M

) , (8)

7If all factor loadings ai are replaced by cai for some positive constant c, then replacing the param-
eters (Y0, κY , θY , σY , lY , µY ) with (Y0/c, κY , θY /c, σY /

√
c, lY , µY /c) leaves the dynamics of aiY (and

therefore also the joint dynamics of λi) unchanged.
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where ccdsi,t,M denotes the 5-year CDS spread at time t for the ith reference entity. More-
over, we impose the parameter constraints

κi = κY ≡ κ, (9)

σi =
√
aiσY ≡ √

aiσ, (10)

µi = aiµY ≡ aiµ, (11)

ω1 =
lY

li + lY
, (12)

ω2 =
aiθY

aiθY + θi
, (13)

which reduces the number of free parameters to just seven. Feldhütter (2007) examines to
what extent (8)-(13) are empirically supported by CDS data for firms in the CDX.NA.IG
index, and finds these assumptions in general to be fairly reasonable.

The constraints (8)-(13) imply that λi is a basic AJD, which is not generally the
case for the sum of two basic AJDs, see Duffie and Gârleanu (2001), Proposition 1.
Specifically,

dλit = κ ((θi + aiθY )− λit) dt+
√
aiσ
√
λit dB̃

(i)
t + dJ̃

(i)
t ,

or in short-hand

λi = bAJD(λi,0, κ, θi + aiθY ,
√
aiσY , li + lY , µi) =

= bAJD(λi,0, κ, θ̃i, σ̃i, l̃, µi),

where θ̃i = θi + aiθY and l̃ = li + lY .
It is easy to show that θY = ω2Avg(θ̃i) ≡ ω2θ̃Avg and that θ̃i = aiθ̃Avg for each i,

so that we can characterize the joint risk-neutral model of default times with the seven
parameters

Θ =
{
κ, θ̃Avg, σ, l̃, µ, ω1, ω2

}
,

and the m + 1 initial factor values. Even though the above constraints greatly reduce
the number of free parameters, a model without these constraints would be just as
computationally tractable, since the computational techniques described below do not
make use of (8)-(13).

Remark 1 The model setup in this section is slightly more general than that of Mortensen
(2006), which in turn is a generalization of Duffie and Gârleanu (2001), who examined
a homogenous portfolio so that in particular all factor loadings ai are equal to one.
Mortensen (2006) imposed

ω1 = ω2 =
Y0

Y0 + Avg (Xi0)
,

so that the jump-correlation structure and mean-reversion levels are determined by the
initial values of the m+ 1 factors.
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3 Computational Techniques

This section describes computational techniques for pricing credit derivatives in the
basic AJD framework of Section 2. Apart from Section 3.1 and 3.2, the techniques are
applicable to other credit derivative pricing models as well. The modified Andersen-
Sidenius-Basu algorithm, for example, allows one to compute the conditional portfolio
loss distribution for any factor model, no matter whether dynamic or static, where
default times are conditionally independent given the common factors. Similarly, the
model for stochastic and serially correlated recovery rates applies to any model where
recovery rates are independent of default times.

3.1 Survival Probabilities

In the affine two-factor model of Section 2.1,

Q (τ i > t | Fs) = 1{τ i>s}E
Q
s

[
e−

∫ t

s
Xi,udu

]
EQ

s

[
e−ai

∫ t

s
Yudu

]
. (14)

The expectations on the right-hand side can be calculated explicitly by evaluating the
moment generating function (3) at q = −1.

3.2 Common Factor Distribution

Mortensen (2006) derived a system of ODEs, whose solution yields the characteristic
function (4). Appendix A.2 shows that this characteristic function is actually known in
closed-form. The distribution of the integrated common factor

Ỹs,t ≡
∫ t

s

Yu du

can therefore be efficiently calculated by Fourier inversion, which was done by carrying
out the following steps:

1. Evaluate the characteristic function of Ỹs,t on an unequally spaced grid of length
1024 with mesh size smallest for grid points close to 0, for example by using an
equally-spaced grid on a logarithmic scale.

2. Fit a complex-valued cubic spline to the output from step 1, and evaluate the cubic
spline on an equally spaced grid with 218 points.

3. Apply the Fast Fourier Transform (FFT) to the output from step 2 to obtain the

density of Ỹs,t evaluated on an equally-spaced grid.

See Cerny (2004) for a general introduction to the FFT, and Carr and Madan (1999),
Section 4 for details regarding the spacing of input and output points.
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3.3 Conditional Distribution of Defaults

By construction, conditional on the integrated common factor Ỹs,t, defaults in the time
interval (s, t] occur independently. At time s, the conditional distribution Ps,t of the
number of defaults in the portfolio up to time t can therefore be computed using the
recursive algorithm of Andersen, Sidenius, and Basu (2003) (ASB in the following).
Specifically, let

qi(Ỹs,t) = Qs

(
s < τ i ≤ t | Ỹs,t

)
= 1{τ i>s}

(
1−EQ

s

[
e−

∫ t

s
Xi,udu

]
e−aiỸs,t

)
(15)

denote the conditional default probability of the ith issuer, and P
(n)
s,t (k | Ỹs,t) denote the

conditional probability that k of the first n credits in the portfolio default between times
s and t. The following recursive updating scheme allows one to calculate the distribution
of the number of defaults in the portfolio conditional on Ỹs,t:

P
(0)
s,t (k | Ỹs,t) = 1{k=0}, (16)

P
(n+1)
s,t (k | Ỹs,t) = qn+1(Ỹs,t)P

(n)
s,t (k − 1 | Ỹs,t) + (1− qn+1(Ỹs,t))P

(n)
s,t (k | Ỹs,t),

for 0 ≤ k ≤ n and 0 ≤ n < m.

Modified ASB-Algorithm The algorithm (16) can be modified so as to considerably
increase its speed. Specifically, we restrict the ASB-algorithm to values of k, such that
Ps,t(k | Ỹs,t) > ε for some small number ε, for example 10−10. Otherwise, the algorithm
spends a large amount of time computing the probability of events that are extremely
unlikely to occur, and therefore have a negligible impact on credit tranche spreads.8

To this end, for a given value of the integrated common factor Ỹs,t, let

d(Ỹs,t) = d(Ỹs,t, s, t) =

m∑

i=1

qi(Ỹs,t)

denote the conditional (on the integrated common factor) expected number of defaults
in the portfolio during the time interval (s, t]. Under certain conditions, the Poisson

approximation (see for example Durrett (2005), Theorem 6.1) implies that Ps,t(k | Ỹs,t)
is close to a Poisson distribution with parameter d(Ỹs,t) so that

Ps,t(k | Ỹs,t) ≈
d(Ỹs,t)

ke−d(Ỹs,t)k

k!
.

8A trivial but significant speed-up can also be achieved by replacing exp(−aiỸs,t) in (15) with its

Taylor series approximation for small values of aiỸs,t.
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Hence, we restrict the ASB-algorithm in (16) to values k ≤ K (ε), where

K (ε) = min

{
K :

d(Ỹs,t)
le−d(Ỹs,t)l

l!
< ε for l ≥ K

}
, (17)

which leads to significant computational savings, since the conditional expected number
of defaults d(Ỹs,t) is usually quite small, so that K (ε) is small too.9

3.4 Unconditional Distribution of Defaults

Recall that the output of the Fourier inversion steps is the density of Ỹs,t evaluated on
an equally spaced grid (ỹi = i∆ỹ : 0 ≤ i < N), where ∆ỹ is the spacing of the grid, and
N the number of points used in the FFT. The unconditional probability Ps,t (k) of k

defaults in the portfolio can therefore be obtained by integration of Ps,t(k | Ỹs,t) over the
distribution of Ỹs,t:

Ps,t (k) =

∫
Ps,t(k | Ỹs,t) dQ(Ỹs,t) ≈ (18)

≈
N∑

i=1

Ps,t(k | ỹi)fỸs,t
(ỹi)∆ỹ ≡ P̂s,t (k)

Since the integrand in (18) is quite costly to evaluate, this computation is extremely
time-consuming for large values of N . Nevertheless, this calculation can be done quite
efficiently by exploiting the smoothness of the probability Ps,t(k | Ỹs,t) in Ỹs,t.

To this end, let FỸs,t
denote the cumulative distribution function of Ỹs,t. For some

number N2 ≪ N , calculate the quantiles

γi = F−1

Ỹs,t

(
i

N2

)
, 0 ≤ i ≤ N2.

With this notation, (18) can be written as a sum of integrals

Ps,t (k) =

N2∑

i=1

∫ γi

γi−1

Ps,t(k | Ỹt)dQs(Ỹs,t). (19)

The integrals in (19) can be evaluated, for example, by Gauss-Legendre integration, and

we denote the resulting approximation of the distribution Ps,t by P̃s,t.
10

9We found using a boundary value of K = 8+ d(Ỹs,t) + 8

√
d(Ỹs,t) to work just as well, but faster to

calculate than (17). The functional form of this expression is motivated by that fact that the mean and
standard deviation of a Poisson random variable with parameter λ are equal to λ and

√
λ, respectively.

10Alternatively, one could use an adaptive quadrature method. However, since the distribution of Ỹs,t

tends to be highly skewed with very narrow peak and since the integrand in (18) is costly to evaluate,
we found it advantageous to aid the numerical quadrature procedure by breaking down the integration
range into sub-intervals based on the quantiles of the distribution of Ỹs,t.
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We found using N2 = 250 and Gauss-Legendre integration with five support points
to be very fast and accurate for calculating the unconditional distribution Ps,t of the
number of defaults. For the fitted models of Section 5.1, the approximation error from
the numerical integration was found to satisfy

∥∥∥P̃s,t − P̂s,t

∥∥∥
TV

=
1

2

m∑

k=0

∣∣∣P̃s,t (k)− P̂s,t (k)
∣∣∣ < 10−7

for a time horizon t − s equal to five years, where ‖·‖TV denotes the total variation
norm.11

3.5 Multiple Horizons

This sections discusses an interpolation method for efficiently calculating the uncondi-
tional distribution of the number of defaults Ps,t for multiple time horizons t. Since the
loss distribution Ps,t varies smoothly in t, it is only necessary to calculate this distribu-
tion on a sparse grid of time horizons T = {t0, t1, . . . , tl}. As hinted by Mortensen
(2006), interpolation techniques can then be used to evaluate Ps,t at non-grid points.

To this end, assume Ps,t is already known for t ∈ T and that we want to compute
Ps,t for a time horizon t with t /∈ T . For each k with 0 ≤ k ≤ m, let wt (k) denote the
cubic spline interpolation of the data

{(
tj, Ps,tj (k)

)
: 0 ≤ j ≤ l

}
evaluated at t. Then

P̂s,t (k) =
wt (k)∑m
n=0wt (n)

, 0 ≤ k ≤ m, (20)

can serve as an estimate of the distribution Ps,t of the number of defaults in the time
interval (s, t].

For the fitted model of Section 5.1, an analysis of the approximation error as a
function of the grid spacing in T showed that the approximation (20) is extremely
accurate up to a yearly spacing. Even a coarse two-year spacing resulted in a relative
pricing error of less than 0.2% for each single tranche. To summarize, interpolating
the distribution of the number of defaults Ps,t over t can speed up the pricing of credit
tranches by a factor of at least four.

3.6 Recovery Rates and Portfolio Loss Distribution

A large portion of tranche pricing models in the literature, such as the Gaussian Copula
model, implicitly assume deterministic recovery rates. However, a couple of empirical
features of recovery rates should be considered:

11For the CDX tranches on this particular date, the approximation error resulted in a relative pricing
error of less than 0.05% for each single tranche.
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1. Stochastic recovery rates: Moody’s (2000) reports a large cross-sectional dispersion
of defaulted debt recovery for senior unsecured bonds (often taken as the reference
entities for credit default swaps) of US corporations between 1970 and 1998. The
25th, 50th and 75th percentile of recovery rates were roughly 30%, 50% and 65%,
respectively. For 1989 to 1995, Altman and Kishore (1996) found recoveries for
senior unsecured debt were on average 47% with a sample standard deviation of
27%.

2. Correlation of recovery rates with macroeconomic conditions: Moody’s (2000), and
Altman, Bray, Resti, and Sironi (2005) find that recovery rates behave counter-
cyclical, that is, recovery rates tend to be low when corporate default rates are
high, and vice versa. In particular, recovery rates are positively serially correlated.

The remainder of this section shows how to incorporate stochastic and serially cor-
related recovery rates into the basic AJD framework of Section 2.1. To retain com-
putational tractability, recovery rates are however still assumed to be independent of
macroeconomic conditions, so that property one is fully, and property two partially
incorporated into the model. To this end, let

Ls,t (x) = Qs

(
1

m

m∑

i=1

(1− Ri) 1{s<τ i≤t} ≤ x

)
(21)

denote the cumulative fractional portfolio loss distribution between times s and t, where
x ∈ [0, 1]. Here Ri denotes the recovery rate of the ith firm, whose probabilistic proper-
ties will be defined shortly.

If, under Q, recovery rates and default times are independent, then (21) can be
written as

Ls,t (x) =
m∑

k=0

Ps,t (k)Gk (x) , (22)

where for each k, Gk is the cumulative portfolio loss distribution conditional on k de-
faults, which does not depend on the time points s and t. Thus, one can incorporate a
rich class of recovery rate scenarios, not only into the basic AJD framework of Section
2.1, but into any model of portfolio credit risk that allows for the decomposition (22).

Example 1 The case of deterministic recovery rates equal to 40%, a common industry
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practice for senior unsecured corporate debt,12 corresponds to the choice

Gk (x) = 1{ k
m
(1−0.4)≤x}.

Example 2 Stochastic recovery rates can be incorporated, for example, by fitting G1 to
historical data and taking

Gk (x) = (G1 ∗Gk−1) (x)

for k ≥ 2, where ’∗’ denotes the convolution operator for random variables . Section 5.1
examines the model fit for the particularly simple choice

G1 (x) =
2

3
1{x=0.45} +

1

3
1{x=0.9}, (23)

which matches the first two moments of historical recovery rates.

Appendix C discusses a choice for the conditional loss distributions Gk that corre-
sponds to stochastic and serially correlated recovery rates.

4 Pricing and Model Calibration

This section discusses the pricing of various credit derivatives and the model calibration
to market prices.

4.1 Pricing

For the purpose of pricing credit risky securities, we adopt the widely used assumption:

Assumption 1 Under the risk-neutral probability measure Q,

(i) Default intensities and interest rates are independent.

(ii) Recovery rates are independent of default intensities.

12As elaborated by Duffie and Singleton (1997), and Duffie and Singleton (1999) it is in general
difficult to separately identify risk-neutral recovery rates and default intensities. Even in cases in which
one has multi-horizon data available, as in Pan and Singleton (2008), recovery rate estimates seem to be
sensitive to the chosen model. Even though Pan and Singleton (2008) focus on sovereign CDS contracts,
they show that this assumption is quite innocuous as long as the unknown true expected recovery rate
is not close to 100%.
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The first assumption has been found to be fairly innocuous, for example, Brigo and
Alfonsi (2004) find no significant correlation between default intensities and interest
rates, although Feldhütter and Lando (2004) and Driessen (2005) find a slightly positive
correlation. However, in light of the 2007-2008 credit crunch, this conclusion might
have to be revised. Nevertheless, for CDOs during this credit crisis, interest rate risk
has been dwarfed by credit spread and default risk. Regarding the second assumption,
Altman, Bray, Resti, and Sironi (2005) and Moody’s (2000) find that recovery rates tend
to behave counter-cyclical, at least under the physical probability measure.

The general procedure for pricing credit derivatives is setting the value of the fixed
leg (the market value of the payments made by the buyer of protection) equal to the
value of the protection leg (the market value of the payments made by the seller of
protection) and to solve for the fair credit spread.

4.1.1 CDS and Credit Index Pricing

It is well known (see Appendix B.1 for details) that under Assumption 1 it is only
necessary to calculate the conditional survival probabilities (14) for the set of future
coupon payment dates {tl : 1 ≤ l ≤ n}, in order to price a CDS contract. Similarly,
knowledge of these survival probabilities for all companies in a portfolio is sufficient for
pricing the corresponding credit index contract. Hence, in the basic AJD framework of
Section 2.1, model-implied CDS and credit index spreads can be calculated explicitly.

4.1.2 Tranche Pricing

For a given point in time t, let

N tr
j,t =

(
Aj − Aj

)
−
[
max

(
Ls,t −Aj , 0

)
−max

(
Ls,t − Aj, 0

)]

denote the remaining notional size of tranche j, where Aj and Aj denote the tranche
attachment and detachment point, respectively. As shown in Appendix B.3, calculat-
ing the market value of the fixed and protection leg of a tranche j requires calculat-
ing the expected tranche size EQ

s (N
tr
j,tl

) for the set of future coupon payments dates,
{tl : 1 ≤ l ≤ n}. We therefore never need to calculate the portfolio loss distribution
(22), but can directly compute the expected tranche size as

EQ
s (N

tr
j,tl

) = N

[
(Aj −Aj)−

m∑

k=0

Ps,tl (k) Ij (k)

]
, (24)

where

Ij (k) =

∫ 1

Aj

min
(
x− Aj, Aj −Aj

)
dGk (x) (25)

is the risk-neutral expected loss for tranche j conditional on k defaults. The integrals
in (25) need to be computed only once, and can then be stored for later use.
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4.2 Computing Times

In summary, in the basic AJD framework of Section 2.1, model-implied CDS, credit
index, and credit tranche spreads can be calculated explicitly, or at least quite efficiently,
using various computational techniques. Table 2 lists the computing times for some
commonly used operations. In particular, it shows that the modified ASB step takes up
about 38% of the total computing time when pricing credit tranches, while the original
version of the ASB algorithm would have accounted for more than 65%. The overall
computational tractability of the basic AJD model is therefore on the same order of
magnitude as that of the static Gaussian copula model, which, in its currently preferred
implementation, also relies on the recursive ASB step (16).

Task Environment % of Time
Evaluating the characteristic function (4) C 7.5%
Cubic spline interpolation of characteristic function C & Matlab 24.1%
FFT Matlab 16.5%
Modified ASB-algorithm C 38.3%
Other Matlab 13.5%

Table 2: Percentage of time spent on various operations when calculating tranche spreads in the

basic AJD framework of Section 2. This breakdown of computing times applies to a hybrid C/Matlab

model implementation on a computer with 1.86Ghz Intel R© Celeron R© processor with 1GB of RAM.

Computing times exclude internal Matlab overhead, which was less than 25%.

4.3 Market Frictions

When pricing credit derivatives one must account for various market frictions, as well
as for certain trading conventions in this market.

First, credit indices and credit tranches recognize only bankruptcy and “failure to
pay” as credit events, whereas CDS contracts usually also include certain forms of re-
structuring. For the latter credit event type, the cheapest-to-deliver option for a buyer
of protection via a CDS can potentially be quite valuable, as was the case for the Con-
seco debt restructuring in 2000.13 For an extensive dataset of CDS quotes between 2000
and 2005, Berndt, Jarrow, and Kang (2007) report a 2.35% median contribution of the
modified-restructuring premium to total 5-year CDS spreads.

Second, index arbitrage traders are the medium by which the level of a CDS index
is kept in line with so-called intrinsics, which is the fair index level implied by indi-
vidual CDS spreads. Whenever intrinsics differ from the current index level, traders
can profitably buy protection via the index and sell protection via the underlying CDS

13SEC filing available at www.secinfo.com/dRx61.5Yk.1.htm

16



contracts, or vice versa. Although there are currently plans underway to automate and
centralize CDS trading, the data used in this analysis covers a time period during which
trading a large portfolio credit default swaps was a labor-intensive process, normally
taking several hours to complete. An index arbitrage trader therefore faces significant
execution risk, especially during periods of time when the index-CDS basis is volatile.
Because of this risk and the cost of paying the bid-offer spread when trading individual
credit default swaps, index arbitrage traders only become active when the index level
differs by at least a couple of basis points from the intrinsics. As a consequence, the
index-CDS basis and index-tranche basis are generally non-zero and time-varying.

To account for these effects, we relate the fixed legs V cds,Fixed
i of the underlying CDS

contracts to the fixed leg V idx,Fixed of a credit index at time t via

m∑

i=1

V cds,Fixed
i (t) = V idx,Fixed (t)

(
1 + bcds,idx (t)

)
, (26)

where bcds,idx (t) is the multiplicative index-CDS basis. Similarly, we relate the tranche
fixed legs to the index fixed leg via

J∑

j=1

V tr,Fixed
j (t) = V idx,Fixed (t)

(
1 + btr,idx (t)

)
, (27)

where btr,idx (t) is the multiplicative index-tranche basis.14 From (26) and (27) it follows
that the index-CDS and index-tranche basis, when measured in basis points, are given
by cidxt,Mb

cds,idx and cidxt,Mb
cds,idx, respectively, where cidxt is the index coupon at time t.

4.4 Model Calibration

This section links model-implied and mid-market CDS, credit index, and credit tranche
spreads. To this end, let ctrj,t,M (S) for S ∈ {MI,MK} denote the spread at time t of the
jth tranche with maturity M (usually 5, 7 or 10 years) as implied by the model (MI),
or as reported by Markit (MK). Similarly, let ccdsi,t,M (MK) denote the spread at time t
of the ith CDS with maturity M , as reported by Markit. Finally, let cidxt,M (C) be the
M−year index spread at time t as reported by Citi.

We use a fitting criterion of the form15

C (Θ) = ωtrRMSEtr (Θ,M)2 + ωcdsRMSEcds (Θ,M)2 + (28)

ωidxRMSEidx (Θ,M)2 ,

14The summation on the right-hand side of (27) includes the super senior (30-100%) tranche.
15Such a fitting criterion arises naturally in a likelihood framework with noisy observations. See

Eckner (2007) for details.
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with weights ωtr, ωcds and ωidx. Here, RMSEtr
t is the relative root mean square tranche

pricing error at time t, defined by

RMSEtr
t (Θ,M) =

√√√√ 1

J

1

|M|

J∑

j=1

∑

M∈M

(
ctrj,t,M (MI)− ctrj,t,M (MK)

ctrj,t,M (MK)

)2

, (29)

RMSEcds
t is the relative root mean square CDS pricing error at time t,

RMSEcds
t (Θ,M) =

√√√√ 1

m

1

|M|

m∑

i=1

∑

M∈M

(
ccdsi,t,M (MI)− ccdsi,t,M (MK)

ccdsi,t,M (MK)

)2

, (30)

and RMSEidx
t is the relative root mean square credit index pricing error at time t,

RMSEidx
t (Θ,M) =

√√√√ 1

|M|
∑

M∈M

(
cidxt,M (MI)− cidxt,M (C)

cidxt,M (C)

)2

. (31)

The following algorithm was used for minimizing (28), that is, for fitting the basic
AJD model of Section 2.1 to market-observed CDS, credit index, and credit tranche
spreads:

Algorithm 1

1. For fixed parameter vector Θ and initial systematic intensity Y0, individual CDS
spreads are calibrated by varying the initial intensities λi0 for 1 ≤ i ≤ m subject to
the constraint λi0 ≥ aiY0, and minimizing the fitting criterion (30).

2. Set bcds,idx = btr,idx = 0 and determine the model implied CDS, index and tranche
spreads. Solve for the index-CDS basis bcds,idx in (26), and for the index-tranche
basis btr,idx in (27). At each revision of bcds,idx, Step 1 is repeated.

3. Vary the parameter vector Θ and the initial systematic intensity Y0 to minimize
the criterion function (28). At each revision of Θ or Y0, Step 1 and 2 are repeated.

Step 3 was implemented by fitting each parameter separately and iterating over the
set of parameters. Convergence typically occurred after 20 to 30 iterations.

5 Results

This section examines the fit of the model to tranche spreads of the CDX.NA.IG index at
a fixed point in time, namely December 5, 2005, to facilitate comparison with Mortensen
(2006). Since the emphasis of this paper are computational techniques, we focus only
on a single point in time. See Eckner (2007) for a time series analysis of tranche spreads
and the evolution of calibrated parameters and fitting errors over time.
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5.1 5 year Maturity

We start by examining the simultaneous model fit to 5-year CDS, credit index, and
credit tranche spreads, using

C(Θ) = RMSEtr
t (Θ, {5}) + 5× RMSEcds

t (Θ, {5}) + 5× RMSEidx
t (Θ, {5})

as the fitting criterion.16 Table 3 shows the model fit of Mortensen (2006) and of the
model from Section 2 with deterministic recovery rates (see Example 1). For brevity we
denote this model as bAJD. Models denoted by bAJD+ and bAJD++ additionally incor-
porate stochastic recovery rates (see Example 2), and stochastic and serially correlated
recovery rates (see Appendix C), respectively.

Tranche Bloomberg Mort Markit Citi MS bAJD bAJD+ bAJD++

0% - 3% 41.1% 43.2% 40.7% 40.8% 41.1% 40.2% 39.8% 40.2%
3% - 7% 117.5 125.9 111.9 112.5 113.5 121.7 128.6 122.1
7% - 10% 32.9 30.6 31.3 31.3 31.0 28.5 28.0 30.0
10% - 15% 15.8 21.3 13.5 13.5 14.5 14.6 14.8 14.4
15% - 30% 7.0 8.8 7.4 7.5 7.3 7.2 7.2 7.2

RMSEtr(Θ, 5) - 0.200 - - - 0.069 0.093 0.062

RMSEcds(Θ, 5) - - - - - 0.000 0.000 0.000

RMSEidx(Θ, 5) - - - - - 0.000 0.000 0.000

Table 3: Comparison of the fit to tranche spreads on December 5, 2005, by different models. Here,

Mort is the model by Mortensen (2006), which was fitted to prices from the Bloomberg system, while

bAJD is the model from Section 2.1 with deterministic recovery rates and was fitted to data provided by

Markit. Models bAJD+ and bAJD++ in addition incorporate stochastic recovery rates, and stochastic

and serially correlated recovery rates, respectively.

Table 3 shows considerable dispersion in tranche mid-market prices across the data
providers Bloomberg, Markit, Citi and Morgan Stanley, probably reflecting the typical
difficulty of price discovery in an over-the-counter market. Regarding the model fit,
in general all models seem to give a reasonable fit to market-observed tranche spreads
on December 5, 2005, except for the junior mezzanine (3-7%) tranche. This pattern
is not unique to stochastic intensity models, but also tends to show up with other
pricing models in use. Conversations with practitioners suggest that this effect might
be due to supply-demand imbalances. At that time, investment banks bought a lot
of bespoke mezzanine protection from clients, and hedged the resulting short position
using standardized credit tranches, which led to downward pressure on the spread of
this tranche.

16Since the super senior (30-100%) tranche was not actively traded in the period of investigation, it
is excluded from our analysis.
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The bottom three rows in Table 3 shows the root mean square tranche pricing errors
(29)-(31). We see that the more flexible correlation structure of the model from Section
2 makes it possible to improve the fit of Mortensen (2006) by a factor of around three in
terms of RMSE. We also see that for this particular date, the model with deterministic
recovery rates (bAJD) is able to more closely fit market-observed tranche spreads than
the model with stochastic recovery rates (bAJD+), even though the latter model better
matches the historical behavior of recovery rates and was therefore a priori expected to
give a better fit. Stochastic recovery rates introduce additional tail risk into the model,
which causes the model-implied spread of the 3-7% tranche to increase since its lower
attachment point already lies above the expected portfolio loss amount over a five-year
time horizon. This effect reduces the ability of model with stochastic recovery rates to
fit the relatively low spread of the junior mezzanine tranche, and therefore increases the
root mean square pricing error.

Finally, even though the model with stochastic and serially correlated recovery rates
(bAJD++) best fits tranche spreads in terms of the root mean square tranche pricing
error (29), the fitted recovery rate dynamics are not realistic. The transition probabilities
ρ1, . . . , ρm in (50) were allowed to vary freely in [0, 1], and ended up taking on the values
0 and 1 most of the time. The purpose of this model is merely to illustrate the size of
the potential fitting improvement, by switching from deterministic recovery rates to a
more flexible class of recovery rate scenarios.

5.2 All Maturities

We next examine the model, when simultaneously fit to 5, 7 and 10-year CDS, credit
index, and tranche spreads, when using the basic AJD model with deterministic recovery
rates, and using

C (Θ) = RMSEtr
t (Θ, {5, 7, 10}) + 5× RMSEcds

t (Θ, {5, 7, 10})
+5× RMSEidx

t (Θ, {5, 7, 10})

as the fitting criterion. Table 4 shows that this model captures the term-structure of 5,
7 and 10-year tranche spreads rather well, again except for the junior mezzanine (3-7%)
tranche. The tranche-RMSE is 0.083, and senior tranche spreads are fit almost perfectly
for all available maturities. With a RMSE of 0.046, the term-structure of CDS spreads
is fit well. The same holds true for the fit to credit index spreads, with an RMSE of
0.003.

5.3 Parameter Estimates

Table 5 reports the fitted parameters for the basic AJD model with deterministic,
stochastic, and stochastic and serially correlated recovery rates. The first three rows
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Tranche Mkt 5yr Model 5yr Mkt 7yr Model 7yr Mkt 10yr Model 10yr
0% - 3% 40.7% 40.0% 54.8% 53.4% 61% 58.8%
3% - 7% 111.9 123.2 270.5 312.3 647 666
7% - 10% 31.3 27.6 53.5 55.6 129 138
10% - 15% 13.5 15.6 29.8 29.6 65 54
15% - 30% 7.4 7.4 11.6 11.3 23 24
Index 49 48.9 58 58.3 71 70.8

RMSEtr(Θ, 5, 7, 10) 0.083

RMSEcds(Θ, 5, 7, 10) 0.046

RMSEidx(Θ, 5, 7, 10) 0.003

Table 4: Model fit of the basic AJD model with deterministic recovery rates to 5, 7 and 10-year

tranche spreads on December 5, 2005.

show the fitted parameters when using only 5-year tranche spreads. As expected, the
estimates are somewhat unstable and depend on the assumed recovery rate dynamics.
For example, the effect of an increase in the diffusive drift κY θY of the systematic fac-
tor can be approximately offset by a decrease in the “jump drift” lY µY , so that the
parameters cannot be accurately identified with 5-year data alone.

k kθ̃Avg × 104 σ l̃ l̃µ× 104 ω1 ω2 Y0 × 104 bcds,idx btr,idx

bAJD(5) 0.045 0.22 0.103 0.010 30.3 0.22 0.05 12.7 0.031 0.137
bAJD+(5) 0.058 0.29 0.104 0.010 30.2 0.23 0.05 12.0 0.031 0.135
bAJD++(5) 0.087 0.24 0.105 0.010 29.8 0.24 0.05 12.6 0.031 0.139
bAJD(5,7,10) -0.214 1.07 0.068 0.007 21.7 0.36 0.28 5.2 0.024 0.083
bAJD+(5,7,10) -0.214 1.07 0.068 0.007 21.7 0.36 0.28 4.9 0.024 0.076
bAJD++(5,7,10) -0.214 1.07 0.068 0.007 21.7 0.36 0.28 5.0 0.024 0.070

Table 5: Fitted model parameters for December 5, 2005. bAJD is the model from Section 2.1 with

deterministic recovery rates, while models bAJD+ and bAJD++ in addition incorporate stochastic

recovery rates, and stochastic and serially correlated recovery rates, respectively. The numbers in

parenthesis following the model name indicate the tranche maturities to which the model was fitted.

In contrast, when fitting the whole term-structure of tranche spreads, risk-neutral
parameter estimates are stable, as can be seen from the last three rows of Table 5. We
therefore concentrate on interpreting these model parameters. First of all, we see that
default intensities are explosive, i.e. have negative risk-neutral mean-reversion rates.
The parameter σ = 0.068 implies a proportional default intensity volatility of 96% per
year for a firm with common factor loading equal to one and initial default intensity
of 50 basis points. With l̃ = 0.007, jumps in default intensities are relatively rare,
with an average of slightly less than one jump per year in a portfolio of 125 companies.
The risk-neutral expected jump size is large, at around 3000 basis points. In view of
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the accounting scandals of 2001-2002, and the 2007-2008 credit crisis, these risk-neutral
parameters do not seem to be excessive. With ω1 = 0.36, about a third of the jumps are
economy-wide events, while two thirds of the jumps are events that affect only a single
company. With

ω2 =
θY

θ̃Avg

= 0.28 >
Y0

Avg (λi0)
= 0.14,

investors take a more pessimistic view about the future evolution of the systematic factor
than about the idiosyncratic factors. In other words, the ratio of Y to individual default
intensities exhibits an upward-sloping term-structure. A value of bcds,idx = 0.024 implies
an index-CDS basis of less than two basis points for all maturities, while btr,idx = 0.083
implies an index-tranche basis of 4-6 basis points for all maturities.

5.4 Hedging

This section examines the calculation of various hedging ratios, which is important for
the usefulness of a model in practice. For example, a financial institution who enters
a credit derivative contract with a client, usually wants to limit its exposure to various
types risks.

5.4.1 Traditional Deltas

We start by examining the problem of using a credit index contract to hedge a credit
tranche against market-wide changes in credit conditions. To this end, we fix a point
in time t and credit index maturity M for the remainder of this section. To shorten
notation, let Idx(Θ) = cidxt,M (Θ) denote the model-implied credit index spread, Trj (Θ) =
ctrj,t,M (Θ) the model-implied spread of the jth tranche, and CDSi (Θ) = ccdsi,t,M (Θ) the
model-implied CDS spread of the ith issuer in the CDX portfolio.

A priori, it is not clear how to define hedging ratios in the basic AJD framework
of Section 2.1, because there are multiple sources of risk in the model. For estimating
the effect of a uniform, market-wide increase in credit spreads, we consider a family of
models parameterized by a fixed common scaling of all risk-neutral intensity processes
by the same positive constant ε. We define the index delta ∆idx

j (t), which measures
the price sensitivity of the jth tranche with respect to the credit index for market-wide
changes in credit conditions, as

∆idx
j (t) =

∂Trj (Θ)

∂ε

∣∣
ε=1

/
∂Idx (Θ)

∂ε

∣∣
ε=1

. (32)

The derivatives can be calculated numerically.
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Similarly, consider a family of models parameterized, for a given firm i, by a positive
scaling εi of the ith firm’s risk-neutral intensity process λi. We define the single-name
delta ∆

(i)
j (t), measuring the price sensitivity of the jth tranche with respect to changes

in the credit quality of the ith name, as

∆
(i)
j (t) =

∂Trj (t, T,Θ)

∂εi

∣∣
εi=1

/
∂CDSi (t, T,Θ)

∂εi

∣∣
εi=1

. (33)

For December 5, 2005, Table 6 provides 5-year tranche deltas ∆idx
j (t) with respect

to the index for the fitted basic AJD models from Section 5.1. The table also provides,
for comparison, deltas implied by the Gaussian copula model, which are obtained by
“bumping” CDS spreads. The deltas of the models are quite similar, so that the ∆-
based hedging performances of these models will be comparable.17

0% - 3% 3% - 7% 7% - 10% 10% - 15% 15% - 30%
∆j,copula 18.5 5.5 1.5 0.8 0.4
∆idx

j,bAJD 22.9 6.9 1.1 0.4 0.2

∆idx
j,bAJD+

23.0 6.8 1.0 0.4 0.3

∆idx
j,bAJD++

22.9 6.9 1.0 0.4 0.3

Table 6: Five-year tranche deltas with respect to the underlying credit index as implied by (i) the cop-

ula model and (ii) the fitted basic AJD models bAJD(5, 7, 10), bAJD+(5, 7, 10) and bAJD++(5, 7, 10)

from Section 5.1. Data are for the 5-year CDX.NA.IG index on December 5, 2005.

Table 7 reports the single-name deltas (33) for the first couple of firms in the
CDX.NA.IG portfolio on December 5, 2005. Comparing the deltas across companies, we
see that credit spread changes of the most risky names in the portfolio have a relatively
larger impact on the equity tranche, whereas credit spread changes of low-risk names
have a relatively larger impact on the senior tranches. To understand this effect, it is
helpful to consider the likely ordering of defaults in the presence of a systematic risk fac-
tor; the default of an already risky credit will most likely be an idiosyncratic event and
therefore mostly affect the equity tranche, while the default of a currently high-quality
name will more likely be a systematic event – in which many companies default over a
short period of time – and therefore more likely affect the senior tranches too.

17Repeating the calculation of deltas for the first day of each month between September 2004 and
November 2006 gave similar hedging ratios.
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Single-name Tranche Delta × 125
Company 5yr CDS 0% - 3% 3% - 7% 7% - 10% 10% - 15% 15% - 30%
Alcoa Inc. 28 20.8 6.3 1.1 0.4 0.4
Albertsons Inc. 306 24.3 5.3 0.5 0.1 0.0
ACE Ltd 28 20.8 6.3 1.1 0.4 0.4
Amern Elec Pwr Co Inc 40 21.8 6.4 1.1 0.4 0.4
Aetna Inc. 23 20.3 6.2 1.1 0.5 0.4
Amern Intl Gp Inc 19 19.9 6.1 1.1 0.5 0.4

Table 7: Five-year tranche deltas with respect to individual credits in the underlying portfolio as

implied by the fitted bAJD(5,7,10) model from Section 5.1. Data are for the first six companies of the

5-year CDX.NA.IG index on December 5, 2005.

5.4.2 Higher-Order Risks

“Higher-order” risks in the credit markets include, for example, changes in correlations,
volatilities, or idiosyncratic default risk.18 For the basic AJD model, deltas with respect
to these risks can be computed in a manner analogous to (32). Such effects cannot be
considered in the inherently static copula model. As an example, Table 8 shows the
tranche deltas

∆Xi

j (t) =
∂Trj (Θ)

∂Xi0

/∂Idx (Θ)

∂Xi0

with respect to changes in the initial value of the idiosyncratic default risk factor Xi of
firm i. This factor captures, for example, the risk of a leveraged buy-out, the outcome
of a clinical trial, or the unexpected resignation of the firm’s CEO, all of which are
unlikely to affect other companies in a material way. Table 8 shows that, as expected,
idiosyncratic shocks to a firm’s credit quality affect mainly the equity tranche and have
hardly any effect on senior tranche spreads. Moreover, the delta of a firm with a high
credit spread tends to be smaller than the delta of a firm with low credit spread; if a
company is likely to default during the next couple of years, an idiosyncratic shock to
its default intensity has a relatively smaller impact, since the firm cannot default more
than once.

6 Conclusion

We presented computational techniques that enhance the applicability of a multivari-
ate intensity-based model of corporate defaults, along the lines of Duffie and Gârleanu
(2001) and Mortensen (2006), for pricing of structured credit derivatives. We showed

18Due to the doubly stochastic assumption, certain risk sources, such as contagion, cannot be captured
in this framework, even though it would be desirable in light of the 2007-2008 financial crisis.
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Idiosyncratic Tranche Delta × 125
Company 5yr CDS 0% - 3% 3% - 7% 7% - 10% 10% - 15% 15% - 30%
Alcoa Inc. 28 26.6 6.2 0.3 0.1 0.0
Albertsons Inc. 306 25.8 4.7 0.2 0.0 0.0
ACE Ltd 28 26.6 6.2 0.3 0.1 0.0
Amern Elec Pwr Co Inc 40 26.6 6.1 0.3 0.1 0.0
Aetna Inc. 23 26.5 6.2 0.3 0.1 0.0
Amern Intl Gp Inc 19 26.5 6.2 0.3 0.1 0.0

Table 8: Five-year tranche deltas with respect to the initial values Xi0 of the idiosyncratic risk factors

Xi as implied by the fitted bAJD(5, 7, 10) model from Section 5.1. Data are for the first six companies

of the 5-year CDX.NA.IG index on December 5, 2005.

that the computational tractability of such a model is similar to that of the Gaussian
copula model, since both model implementations have the recursive calculation of the
conditional portfolio loss distribution via the Andersen-Sidenius-Basu algorithm as the
computational bottleneck.

We improved upon the model fit in Mortensen (2006) by a factor of around three, by
allowing for a more flexible correlation structure, and by accounting for market frictions
due to bid-offer spreads. We showed that a rich class of recovery rate scenarios can
be incorporated into the model in a computationally tractable manner. The resulting
model can be used to hedge a wide range of risks in the credit market, such as the risk
of changes in correlations, volatilities, or idiosyncratic default risk - not all of which can
be considered in the inherently static copula model.

We hope that our work spurs additional research in the area of bottom-up models for
portfolio credit risk, which are required for consistently pricing credit derivatives that ei-
ther fully or partially share each other’s underlying portfolio, such as bespoke CDOs. For
example, more than one common factor could be incorporate into the basic AJD model
to capture the correlation structure at the sectoral level. In this case, survival probabil-
ities would still be known in closed-form, but calculating the portfolio loss distribution
via (18) would require multi-dimensional numerical integration which is computationally
more burdensome. For securities with long time horizons, the assumption of constant
volatility is often fairly innocuous due to the central limit theorem. However, for the
pricing of short-dated securities, like options on credit indices and tranches, having a
model that incorporates stochastic volatility and jumps in volatility would be desirable.
Since evaluating the characteristic function (4) of an integrated AJD accounts for less
than 8% of the total computing time in our implementation, more elaborate affine pro-
cesses (supporting stochastic volatility, time-varying jump intensities, multiple factors)
could be used as the factors driving default intensities, even if such an extension requires
the ODEs in (36) to be solved numerically. Although we have examined stochastic and
serially correlated recovery rates, it would be desirable to also incorporate countercyclical
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recovery rates, which are empirically well-documented and potentially quite important
for pricing of credit derivatives that are heavily exposed to tail risk.
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Appendices

A Basic Affine Jump Diffusions

This section lists a couple of useful properties about basic Affine Jump Diffusions. It
builds on Duffie, Pan, and Singleton (2000), Duffie and Gârleanu (2001), and Appendix
A of Duffie and Singleton (2003). For a more general treatment of affine processes see
Duffie, Filipović, and Schachermayer (2003).

A stochastic process X on a filtered probability space (Ω,F , (Ft) ,P) is called a basic
AJD, or short-hand X =bAJD(x0, κ, θ, σ, l, µ), if its dynamics are of the form

dXt = κ (θ −Xt) dt+ σ
√
Xt dBt + dJt, X0 = x0, (34)

where B is a standard Brownian motion, and J is an independent compound Poisson
process with jump intensity l and exponentially distributed jumps with mean µ. The
moment generating function of the jump size distribution ν is

ψ (c) =

∫

R

eczdν (z) =
1

1− cµ
,

for c ∈ C and Re(c) < 1/µ.

A.1 Moment Generating Function

Let X be a basic AJD with dynamics given by (34). From Proposition 1 in Duffie, Pan,
and Singleton (2000) it follows that for t > 0 and q ∈ R

E
(
eq

∫ t

0
Xsds

)
= eα(t)+β(t)X0 , (35)

where α (·) and β (·) solve the pair of Riccati ordinary differential equations

α′ (t) = −κθβ (t)− l (ψ (β (t))− 1)

β ′ (t) = κβ (t)− 1
2
σ2β (t)2 − q,

(36)

with boundary conditions α (0) = β (0) = 0.
Duffie and Gârleanu (2001) give an explicit solution for α and β for a slightly more

general transform than (35). In our case, their formula simplifies to

α (t) = −2κθ

σ2
log

(
c1 + d1e

−γt

c1 + d1

)
+
κθ

c1
t+ (37)

+l

(
d1/c1 − d2/c2

−γd2

)
log

(
c2 + d2e

−γt

c2 + d2

)
+ l

1− c2
c2

t

β (t) =
1− e−γt

c1 + d1e−γt
,
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where

γ =
√
κ2 − 2σ2q

c1 = (κ+ γ) / (2q)
c2 = 1− µ/c1
d1 = (−κ+ γ) / (2q)
d2 = (d1 + µ) /c1

(38)

Hence, the moment generating function of an integrated basic AJD,

X̃t ≡
∫ t

0

Xs ds, (39)

is known in closed-form.

A.2 Characteristic Function

Again let X be a basic AJD with dynamics given by (34). Setting q = iu for u ∈ R in
(35) gives an explicit formula for the characteristic function of the integrated AJD (39).
Although Duffie and Gârleanu (2001) originally solved (36) and arrived at (37) only for
real-valued q, the derivation can be repeated for the complex-valued version of (36). In
this case, we interpret γ in (38) as

γ =
∣∣γ2
∣∣1/2 exp

(
i arg

(
γ2
)
/2
)

where for any z ∈ C, arg (z) is defined such that z = |z| exp (i arg (z)) with −π <
arg (z) ≤ π. Moreover, we take log (z) = log (|z|) + i arg (z), although any other branch
of the complex logarithm would work as well, since the logarithm of γ shows up only in
the exponent of (35). See Lord and Kahl (2006) for a discussion on evaluating transforms
of the form (35) with complex-valued exponent.

B Pricing

This section gives a detailed description of the CDS, credit index and tranche pricing
mechanics, not just for the basic AJD framework of Section 2, but for any model of
portfolio credit risk for which Assumption 1 holds. The pricing formulas are similar to
the ones in Berndt, Douglas, Duffie, Ferguson, and Schranz (2005), Mortensen (2006),
and Errais, Giesecke, and Goldberg (2006), but include a more detailed treatment of
day counting conventions and accrual payments.
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B.1 CDS Pricing

For a fixed point in time t, consider a credit default swap written on a reference entity i,
with maturity M , and notional amount Ni. Let c

cds
i,t,M denote the CDS spread at time t,

and {tl : 1 ≤ l ≤ n} the set of coupon payment dates. The market value of the payments
made by the buyer of protection (commonly called the fixed leg) equals

V cds,Fixed
i (t) = EQ

t


 ∑

{l:tl>t}

e−
∫ tl
t rsds1{τ i>tl}Nic

cds
i,t,M

(tl − tl−1)

360


 (40)

−Nic
cds
i,t,M

t−max (tl : tl ≤ t)

360
,

using an Actual/360 day-count convention, where τ i is the default time of company i
and where the risk-neutral expectation is taken conditional on all available information
up to time t. The second term in (40) reflects the accrued premium between the most
recent coupon payment date and the time of entering the CDS contract.

The market value of the payments made by the seller of protection (commonly called
the protection leg) equals

V cds,Prot
i (t) = EQ

t

(
e−

∫ τi
t rsds1{τ i≤tn}Wτ i

)
, (41)

where

Wτ i = Ni (1− Ri)−Nic
cds
i,t,M (τ i −max (tl : tl ≤ τ i)) (42)

is the payment made in case of default at time τ i, and Ri denotes the possibly random
recovery rate. The second term in (42) reflects the accrued premium at the time of
default.

Under Assumption 1, the market value of the fixed leg (40) can be approximated as

V cds,Fixed
i (t) ≈ Nic

cds
i,t,M

∑

{l:tl>t}

Bt (tl)
(tl − tl−1)

360
Qt (τ i > tl) (43)

−Nic
cds
i,t,M

t−max (tl : tl ≤ t)

360
,

where Bt (T ) is the discount function at time t for a unit payoff at maturity T ≥ t,
and where Qt (A) denotes the risk-neutral probability of an event A, conditional on all
available information up to time t.

Using the approximation that defaults occur half-way in between coupon payment
dates, the market value of the protection leg (41) can be approximated as
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V cds,Prot
i (t) ≈ Ni

∑

{l:tl>t}

Bt

(
max(tl−1, t) + tl

2

)
Qt (τ i ∈ (max(tl−1, t), tl] ) (44)

×
[
(
1−EQ (Ri)

)
−
ccdsi,t,M

2

(tl −max(tl−1, t))

360

]
,

where we used that, under Assumption 1, the recovery rate Ri is Q−independent of all
other random variables in the model, so that due to the tower property, Ri can without
loss of generality be treated as a constant and equal to its risk-neutral expectation.

The fair CDS spread is obtained by setting (43) equal to (44) and solving for ccdsi,t,m.
As shown in Section 3, the quantities Qt (τ i > tl) and therefore also

Qt (τ i ∈ (tl−1, tl]) = Qt (τ i > tl−1)−Qt (τ i > tl)

are known in closed-form in the basic AJD framework of Section 2. Model-implied CDS
spreads are therefore also known in closed-form.

B.2 Index Pricing

For a fixed point in time t, consider a credit index contract with maturity M , index
spread cidxt,M , and with m companies in the underlying portfolio. By market convention,
the remaining notional size of the index contract at a time s ≥ t equals

N idx
s =

m∑

i=1

Ni1{τ i>s}, (45)

where Ni is the notional exposure of the index to company i in the underlying portfolio.
Under Assumption 1, the market value of the fixed-leg can be approximated as

V idx,Fixed (t) ≈ cidxt,M

∑

{l:tl>t}

Bt (tl)
(tl − tl−1)

360
EQ

t

(
N idx

tl

)
(46)

−Ncidxt,M

t−max (tl : tl ≤ t)

360
,

where the second term reflects the accrued premium between the most recent coupon
payment date and the time of entering the index contract.

Using the approximation that defaults occur half-way in between coupon payment
dates, the market value of the payments made by the protection leg can be approximated
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as

V idx,Prot (t) ≈
∑

{l:tl>t}

Bt

(
max(tl−1, t) + tl

2

)
EQ

t

(
N idx

tl
−N idx

max(tl−1,t)

)
(47)

×
[
(
1− EQ (Ri)

)
−
cidxt,M

2

(tl −max(tl−1, t))

360

]
,

where the second term in the brackets reflects the expected accrual payment at the time
of default.

The fair index spread is obtained by setting (46) equal to (47) and solving for cidxt,M .
Since the quantities Qt (τ i > tl) and therefore also Qt (τ i ∈ (tl−1, tl]) and

EQ
t

(
N idx

tl

)
=

m∑

i=1

NiQt (τ i > tl)

are known in closed-form in the basic AJD framework of Section 2, model-implied index
spreads are also known in closed-form.

B.3 Tranche Pricing

For a fixed point in time t, consider a credit tranche with maturity M , tranche spread
ctrj,t,M , and lower and upper attachment point Aj and Aj, respectively. For the purpose
of determining the cash flows of a tranche, the market has adopted a slightly different
definition of the portfolio notional than (45) for credit indices, namely for s ≥ t,

N tr
s =

(
m∑

i=1

Ni

)
− Ltr

s ,

where

Ltr
s =

m∑

i=1

Ni (1−Ri)1{τ i≤s}

denotes the portfolio loss amount up to time s. The notional size of tranche j at time s
is defined as

N tr
j,s = N

(
Aj −Aj

)
−
[
max

(
Ltr
s − AjN, 0

)
−max

(
Ltr
s − AjN, 0

)]
,

which is reminiscent of an option spread on the portfolio loss amount.19

19The definition of the remaining notional size for the super senior (30% - 100%) tranche is slightly
different, namely 0.7N − [(Ltr

s − 0.3N)+ − (Ltr
s − 0.7N)]−

(
N
m

∑
1{τ i≤s} − Ltr

s

)
.
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Under Assumption 1, the market value of the fixed-leg of the jth tranche can be
approximated as

V tr,Fixed
j (t) ≈ ctrj,t,M

∑

{l:tl>t}

Bt (tl)
(tl − tl−1)

360
EQ

t

(
N tr

j,tl

)
(48)

−N tr
j,tc

tr
j,t,M

t−max (tl : tl ≤ t)

360
,

where the second term reflects the accrued premium between the most recent coupon
payment date and the time of entering the tranche contract.

Using the approximation that defaults occur half-way in between coupon payment
dates, the market value of the protection leg can be approximated as

V tr,Prot
j (t) ≈

∑

{l:tl>t}

Bt

(
max(tl−1, t) + tl

2

)
EQ

t

(
N tr

j,tl
−N tr

j,max(tl−1,t)

)
(49)

×
[
1−

ctrj,t,M
2

(tl −max(tl−1, t))

360

]
,

where the second term in the brackets reflects the expected accrual payment at the time
of default.

The fair tranche spread is obtained by setting (48) equal to (49) and solving for ctrj,t,M .

Under Assumption 1, the quantities EQ
t (N

tr
j,tl

) and therefore also

EQ
t (N

tr
j,tl

−N tr
j,tl−1

) = EQ
t (N

tr
j,tl

)− EQ
t (N

tr
j,tl−1

)

depend only on the portfolio loss distribution Lt,tl . As shown in Section 3, this distri-
bution can be calculated quite efficiently. In the basic AJD framework of Section 2,
model-implied tranche spreads can therefore be efficiently calculated, even though they
are not known in closed-form.

C Stochastic and Serially Correlated Recovery Rates

This section shows that stochastic and serially correlated recovery rates can be incor-
porated into any tranche pricing model that allows for the decomposition (22). To
this end, let Uk be a Markov chain with state space {0, 1, 2}, representing a bad, neu-
tral and good economic environment for distressed debt, respectively. Furthermore, let
U0 ∼Uniform(0, 1, 2) and define the time-varying matrix of transition probabilities as

QU
k−1,k =




1− ρk ρk/2 ρk/2
ρk/2 1− ρk ρk/2
ρk/2 ρk/2 1− ρk


 (50)
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with ρk ∈ [0, 1]. The recovery rate of the kth default in the portfolio is taken to be

R(k) = 0.1 + 0.3Uk, (51)

so that the fractional portfolio loss due to the first k defaults is

Lk =
1

m
(0.1k + 0.3Vk) ,

with Vk =
∑k

l=1 Ul.
It is easy to verify that the unconditional mean and standard deviation of each

recovery R(k) is 40% and 24.5%, respectively, roughly matching the values reported by
Altman and Kishore (1996). For ρk < 1/2, consecutive recoveries R(k−1) and R(k) are
positively correlated. The conditional loss distributions Gk in (22) can be calculated
efficiently via the two dimensional Markov chain Wk = (Uk , Vk), which has transition
probabilities

QW
k−1,k (Uk , Vk |Uk−1 , Vk−1) = QU

k−1,k (Uk |Uk−1) 1{Vk−Vk−1=Uk}.

Hence, the distribution ofWk can be computed in a simple recursive manner, as therefore
can Gk, since

Gk (x) = Q (Lk ≤ x) = Q

(
1

m
(0.1k + 0.3Vk) ≤ x

)
.

Figure 1 shows the portfolio loss distribution, conditional on 25 defaults, for the
case of (i) stochastic and (ii) stochastic and serially correlated recovery rates with same
marginal distribution of individual recovery rates. The parameters for the latter case
are ρk = 0.3 for 1 ≤ k ≤ m. We see that serial correlation of recovery rates leads to
much fatter tails in the portfolio loss distribution, which is potentially good news from
a modeling perspective.
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Figure 1: Portfolio loss distribution, conditional on 25 defaults, for stochastic and independent recov-

ery rates (dashed line), and stochastic and serially correlated recovery rates (solid line) with ρk ≡ 0.3

in (50).
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