Multi-Name Credit Derivatives Pricing and Risk Premia

Andreas Eckner, May 2007

Econ/Finance/Investment Science Colloquy, Stanford University

Outline

- Overview
 - Credit Derivatives Market
 - Current Challenges
- Model Setup
 - Default Intensity Model
 - Hedging
- Time Series Analysis
- Risk Premia
 - Physical Default Dynamics
 - Types of Risk Premia
 - Decomposition of Returns
- Summary, Open Questions

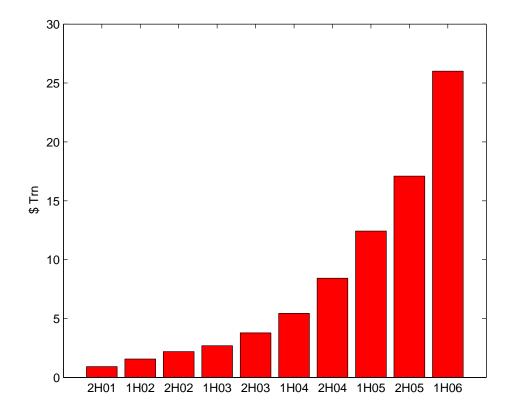
Outline

• Overview

- Credit Derivatives Market
- Current Challenges
- Model Setup
 - Default Intensity Model
 - Hedging
- Time Series Analysis
- Risk Premia
 - Physical Default Dynamics
 - Types of Risk Premia
 - Decomposition of Returns
- Summary, Open Questions

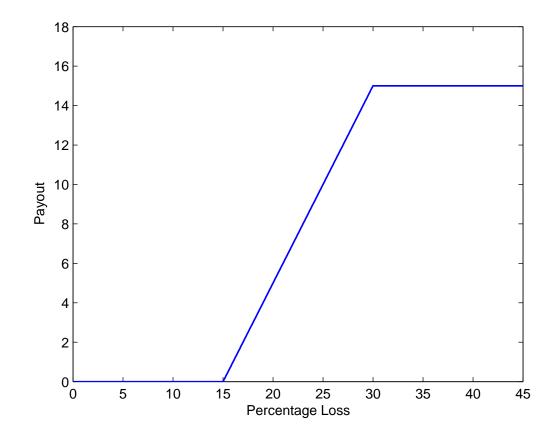
Overview - Part I

- Credit Default Swap (CDS): Protects against default of particular company
- Notional amount of outstanding credit default swaps:



Overview - Part II

- Credit Indices: Protects against default of basket of companies
- Credit Index Tranches



Overview - Part II

- CDX.NA.IG index:
 - Underlying portfolio: 125 North-American investment-grade issuers
 - Tranche structure and market prices on December 5, 2005:

Tranche	% of Credit Losses	Spread (bps)	Up-front Payment	
Equity	0% - 3%	500	40.7%	
Junior Mezzanine	3% - 7%	111.9	0	
Mezzanine	7% - 10%	31.3	0	
Senior	10% - 15%	13.5	0	
Super Senior	15% - 30%	7.4	0	
Index	0%- 100%	49	0	

Overview - Part IV

- Current Challenges
 - No "Black-Scholes" model yet
 - Defaults are rare events \Rightarrow default correlations hard to estimate
 - Intensity based models look quite promising, although computationally burdensome
- Recent work in this area: Duffie and Singleton (1997), Lando (1998), Duffie and Gârleanu (2001), Giesecke and Goldberg (2005), Mortensen (2006), Feldhütter (2007)
- Today:
 - Stochastic intensity model that is computationally quite tractable: 3-5x speed up
 - Joint model for physical ($\lambda_i^{\mathbb{P}}$) and risk-neutral ($\lambda_i^{\mathbb{Q}}$) default intensities \Rightarrow Risk premia

Outline

- Overview
 - Credit Derivatives Market
 - Current Challenges
- Model Setup
 - Default Intensity Model
 - Hedging
- Time Series Analysis
- Risk Premia
 - Physical Default Dynamics
 - Types of Risk Premia
 - Decomposition of Returns
- Summary, Open Questions

Default Time Model - Part I

• Building blocks for default intensity model: Basic Affine Jump Diffusions (AJD)

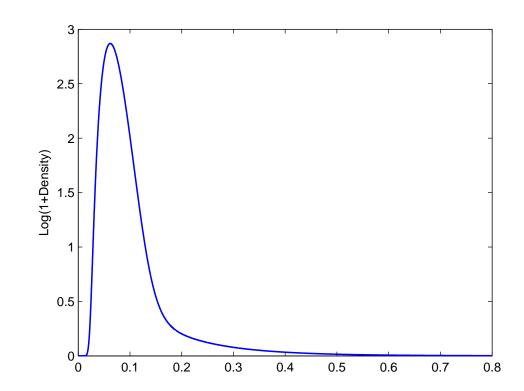
$$dZ_t = \kappa^{\mathbb{Q}} \left(\theta^{\mathbb{Q}} - Z_t \right) dt + \sigma \sqrt{Z_t} dB_t^{\mathbb{Q}} + dJ_t^{\mathbb{Q}}$$

- $B_t^{\mathbb{Q}}$ Brownian motion under \mathbb{Q}
- $J_t^{\mathbb{Q}}$ an independent compound Poisson process with jump intensity $l^{\mathbb{Q}}$ exponentially distributed jumps with mean $\mu^{\mathbb{Q}}$
- Following quantities known explicitly (Duffie, Pan, and Singleton (2000)):
 - Moment generating function: $E^{\mathbb{Q}}\left(e^{q\int_{0}^{T}Z_{t}^{\mathbb{Q}}dt}\right)$

– Fourier transform:
$$E^{\mathbb{Q}}\left(e^{iq\int_{0}^{T}Z_{t}^{\mathbb{Q}}dt}\right)$$

Default Time Model - Part II

- The density of $\int_0^T Z_t dt$ can obtained by Fourier inversion (e.g. via FFT)
- Example: $Z_0 = 0.01, k = 0.25, \theta = 0.02, \sigma = 0.05, l = 0.02, \mu = 0.08, T = 5$



Default Time Model - Part III

Factor model for default intensities

$$\lambda_{it}^{\mathbb{Q}} = X_{it} + a_i Y_t, \tag{1}$$

as in Duffie and Gârleanu (2001), and Mortensen (2006), where X_i and Y are independent basic AJD

- Conditional on $\{\lambda_{it}^{\mathbb{Q}} : t \ge 0\}$, τ_i is the time of the first jump of an inhomogeneous Poisson process with intensity $\lambda_i^{\mathbb{Q}}$
- Survival Probabilities

$$\mathbb{Q}\left(\tau_{i} > t\right) = E^{\mathbb{Q}}\left[e^{-\int_{0}^{t}\lambda_{i,s}^{\mathbb{Q}}ds}\right] = E^{\mathbb{Q}}\left[e^{-\int_{0}^{t}X_{i,s}ds}\right]E^{\mathbb{Q}}\left[e^{-a_{i}\int_{0}^{t}Y_{s}ds}\right]$$

Default Time Model - Part IV

• Conditional on $\widetilde{Y}_t := \int_0^t Y_s ds$, defaults in (0, t] are independent and default probabilities given by

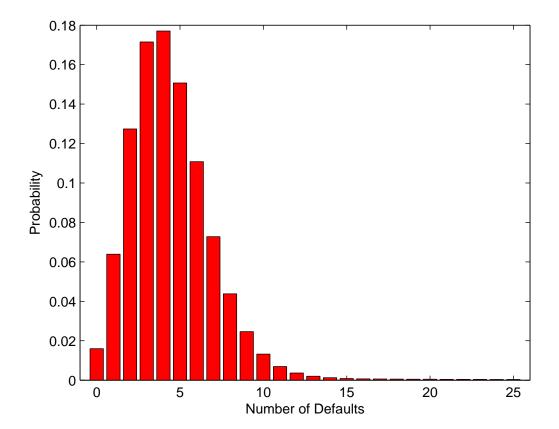
$$\mathbb{Q}\left(\tau_{i} \leq t \mid \widetilde{Y}_{t}\right) = 1 - E^{\mathbb{Q}}\left[e^{-\int_{0}^{t} X_{i,s} ds}\right] e^{-a_{i}\widetilde{Y}_{t}}$$

- The conditional distribution of number of defaults $P_t(k \mid \tilde{Y}_t)$ can therefore be obtained in a simple recursive manner (Andersen, Sidenius, and Basu (2003)): Convolution of Bernoulli R.V.s (default indicator variables)
- Unconditional distribution of number of defaults

$$P_t(k) = \int P_t(k \mid \widetilde{Y}_t) d\mathbb{Q}\left(\widetilde{Y}_t\right)$$

Default Time Model - Part V

• Distribution of number of defaults for T=5, implied by the model fitted to tranche spreads on December 5, 2005



Pricing

• Model-implied spread for CDS, credit tranches, credit index:

Value of Protection Leg = Value of Fixed Leg = $PV_{01} \times$ Spread

- Assuming (under \mathbb{Q})
 - Default intensities and interest rates independent
 - Recovery rates independent of default intensities

- Defaults occur on average in middle between two coupon payment dates \Rightarrow model-implied CDS, tranche and index spreads are an explicit function of the portfolio loss distribution $P_{t_k}(k)$ at all future coupon payment dates t_k \Rightarrow By calculating $P_t(k)$ for a small number of points in time t, we can price large class of credit derivative securities

Computational Tricks

- Spline interpolation of Fourier transform
- Restrict ASB-algorithm to values of k, such that $P_t(k \mid \tilde{Y}_t) > 10^{-10}$
- Gauss-Legendre integration for calculating unconditional portfolio loss distribution $P_t\left(k\right)$
- Geometric interpolation of portfolio loss distribution $P_t(k)$ over t
- \Rightarrow For fixed set of parameters, pricing of tranches in 1-2 seconds

Recovery Rates - Part I

- Recovery Rate = Market value of the underlying debt as a fraction of the notional amount at the time of default
- Average recovery rate for senior unsecured bonds 1970-1998: about 40%
- Well documented empirical features (Moody's (2000), Altman, Bray, Resti, and Sironi (2003)):
 - Randomness: 25th and 75th percentile 30% and 65%, respectively
 - Serial Correlation
 - Counter-cyclical recovery rates
- Usually, assumption of constant recovery rates only innocuous in univariate setting, where expected losses matter

Recovery Rates - Part II

• Sufficient for pricing, knowledge of:

$$\mathbb{Q}_t \left(L_T \le x \right) \qquad \forall T > t, x \in \mathbb{R}_+$$

• Rewrite:

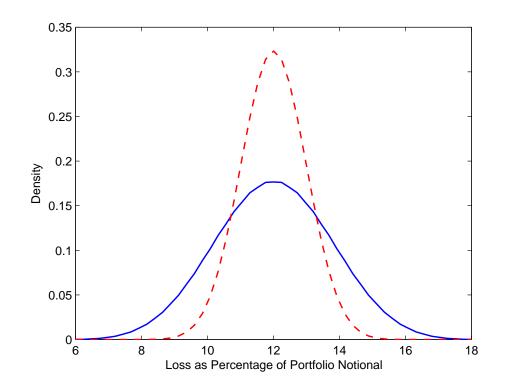
$$E_t^{\mathbb{Q}}\left(\mathbb{Q}\left(L_T \le x \,|\, \text{n Defaults}\right)\right) = \sum_{n=0}^m P_{t,T}(n)G_n\left(x\right)$$

where G_n is the portfolio loss distribution conditional on seeing n defaults, assumed to be independent of T

- Different choices for G_n :
 - Constant RRs equal to 40%: $G_n(x) = \mathbf{1}_{\{x \ge 0.6*n/m\}}$
 - Stochastic, but uncorrelated RRs:

$$G_1 = \frac{1}{m} \left(1 - \text{Uniform} \left(\{ 0.1, 0.4, 0.7 \} \right) \right), G_n = G_1 * G_{n-1} \text{ for } n \ge 2$$

- Stochastic and serially correlated RRs: Recovery of n-th default modeled as (time-inhomogeneous) Markov chain with state space $\{0.1, 0.4, 0.7\}$, representing a bad, medium, good economic environment
- G_{25} for stochastic but independent recovery rates (dashed line), for stochastic and serially correlated recovery rates (solid line, 80% probability of staying in same state):



Model Estimation - Part I

• Assume market quotes for CDS and tranche spreads subject to normally distributed measurement noise, for example:

$$cp_{t,j,M}^* = cp_{t,j,M} + \varepsilon_{t,j,M}^{tr}$$
$$\varepsilon_{t,j,M}^{tr} \sim N(0, \sigma_{tr}^2 (cp_{t,j,M}^*)^2)$$

• Likelihood function of form

$$\log LH_{tr}\left(\Theta_{tr}^{\mathbb{Q}}\right) = c_{tr} + d_{tr} \cdot RMSE_{tr}^2,$$

for constants c_{tr} and $d_{tr} < 0$ and

$$RMSE_{tr} = \sqrt{\frac{1}{T} \frac{1}{J} \frac{1}{M} \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{M \in \{5,7,10\}}^{J} \left(\frac{cp_{t,j,M} - cp_{t,j,M}^{*}}{cp_{t,j,M}^{*}}\right)^{2}}$$
(2)

Model Estimation - Part II

• To ensure model identifiability impose:

$$\frac{1}{m}\sum_{i=1}^{m}a_i = 1$$

• To get parsimonious model impose:

$$\kappa_i^{\mathbb{Q}} = \kappa_Y^{\mathbb{Q}} =: \kappa^{\mathbb{Q}}, \quad \sigma_i = \sqrt{a_i}\sigma_Y =: \sqrt{a_i}\sigma, \quad \mu_i^{\mathbb{Q}} = a_i\mu_Y^{\mathbb{Q}},$$
$$\omega_1 = \frac{l_Y}{l_i + l_Y}, \qquad 1 \le i \le m$$

and

$$\omega_2 = \frac{a_i \theta_Y}{a_i \theta_Y + \theta_i}, \qquad 1 \le i \le m$$

• Ensure that $\lambda_{it}^{\mathbb{Q}} \stackrel{\mathbb{Q}}{\sim} AJD(\lambda_{i,0}^{\mathbb{Q}}, \kappa^{\mathbb{Q}}, \theta_i^{\mathbb{Q}} + a_i\theta_Y^{\mathbb{Q}}, \sqrt{a_i}\sigma_Y, l_i^{\mathbb{Q}} + l_Y^{\mathbb{Q}}, \mu_i^{\mathbb{Q}})$

Model - Part III

- For fixed $\kappa^{\mathbb{Q}}, \theta^{\mathbb{Q}}_{Y} + Avg(\theta^{\mathbb{Q}}_{i}), \sigma_{Y}, l^{\mathbb{Q}}_{Y} + l^{\mathbb{Q}}_{i}, \mu^{\mathbb{Q}}, \omega_{1}, \omega_{2}$
 - Calibrate term-structure of CDS quotes by varying a_i , $\lambda_{i,0}^{\mathbb{Q}}$
 - Calculate model-implied tranche spreads
 - Calculate relative RMSE (2)
- By varying the parameters $\kappa^{\mathbb{Q}}$, $\theta^{\mathbb{Q}}_{Y} + Avg(\theta^{\mathbb{Q}}_{i})$, σ_{Y} , $l^{\mathbb{Q}}_{Y} + l^{\mathbb{Q}}_{i}$, $\mu^{\mathbb{Q}}$, ω_{1} , ω_{2} , minimize relative RMSE given by (2), for example using Nelder-Mead Simplex method

Results: Model Fit - Part I

• Comparison of model fit to 5-year tranche spreads on December 5, 2005:

Tranche	Bloomberg	$Model_M$	Markit	$Model_E$	$Model_{E+}$	$Model_{E++}$
0% - 3%	41.1%	43.2%	40.7%	40.5%	40.3%	40.6%
3% - 7%	117.5	125.9	111.9	118.5	123.7	121.2
7% - 10%	32.9	30.6	31.3	29.2	28.9	30.6
10% - 15%	15.8	21.3	13.5	14.6	14.5	14.4
15% - 30%	7.0	8.8	7.4	7.2	7.1	7.3
Rel. RMSE	-	0.200	-	0.056	0.072	0.049

- $Model_M \dots Model$ by Mortensen (2006)
- $Model_E \dots constant recovery rates$
- $Model_{E+}$... stochastic but uncorrelated recovery rates

 $Model_{E++}$... stochastic and serially correlated recovery rates

Results: Model Fit - Part II

• Model fit on December 5, 2005 to the term-structure of tranche spreads:

Tranche	Market 5yr	Model 5yr	Market 7yr	Model 7yr	Market 10yr	Model 10yr
0% - 3%	40.7%	39.9%	54.8%	56.3%	61%	63%
3% - 7%	111.9	124.8	270.5	303.3	647	664
7% - 10%	31.3	30.3	53.5	57.7	129	122
10% - 15%	13.5	15.5	29.8	29.0	65	45
15% - 30%	7.4	7.2	11.6	12.4	23	19
Index	49	49	58	58	71	68

Results: Model Parameters

Comparison of the MLE model parameters for the fit to market prices on December 5, 2005:

	$k^{\mathbb{Q}}$	$\theta_Y^{\mathbb{Q}} + Avg(\theta_i^{\mathbb{Q}})$	$\sigma_Y^{\mathbb{Q}}$	$l_Y^{\mathbb{Q}} + l_i^{\mathbb{Q}}$	$\mu^{\mathbb{Q}}$	ω_1	ω_2	ω_3
$Model_E$	0.010	0.077	0.087	0.008	0.223	0.35	0.09	0.014
$Model_{E+}$	0.010	0.063	0.084	0.008	0.224	0.34	0.09	0.014
$Model_{E++}$	0.010	0.077	0.087	0.008	0.223	0.34	0.09	0.014

 $Model_E \dots constant recovery rates$

 $Model_{E+}$... stochastic but uncorrelated recovery rates

 $Model_{E++}$... stochastic and serially correlated recovery rates

Applications: Hedging - Part I

- Notation:
 - $CDS_i(t, T, \Theta^{\mathbb{Q}})$... model-implied CDS spread for i-th company
 - $Idx\left(t,T,\Theta^{\mathbb{Q}}
 ight)\dots$ model-implied index spread
 - $Tr_j(t, T, \Theta^{\mathbb{Q}})$... model-implied spread for j-th tranche
- Calculate price sensitivities by scaling default intensities: $\lambda_{it}^{\mathbb{Q}} \leftarrow \lambda_{it}^{\mathbb{Q}}(1+\varepsilon)$
- Tranche delta with respect to index:

$$\Delta_{j}^{idx}\left(t\right) = \frac{\partial Tr_{j}\left(t, T, \Theta^{\mathbb{Q}}\right)}{\partial \varepsilon}\Big|_{\varepsilon=0} \Big/ \frac{\partial Idx\left(t, T, \Theta^{\mathbb{Q}}\right)}{\partial \varepsilon}\Big|_{\varepsilon=0},$$

• Hedging ratio: $HR_{j}^{(idx)}\left(t\right) = \Delta_{j}^{(idx)}\left(t\right) \times \frac{\text{Tranche Notional}}{\text{Index Notional}} \times \frac{\text{Tranche PV01}}{\text{Index PV01}}$

Applications: Hedging - Part II

- Tranche position with \$1 notional, and index position with $-\$HR_j(t)$ notional, eliminates exposure to market-wide changes in credit spreads (up to first-order)
- Deltas $\Delta_{i}^{idx}(t)$ for the 5-year CDX.NA.IG on December 5, 2005:

	0%-3%	3%-7%	7%-10%	10%-15%	15%-30%
$\Delta_{j,Copula}$	18.5	5.5	1.5	0.8	0.4
$\Delta_{j,AJD}$	21.1	5.8	1.2	0.4	0.2

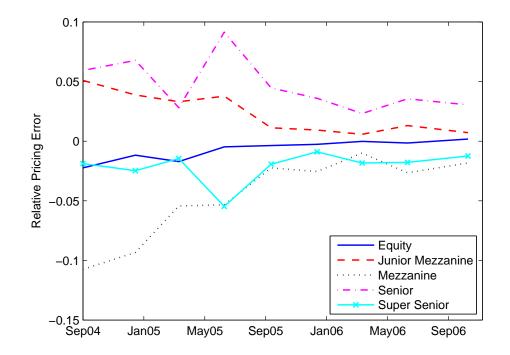
• Similar: tranche deltas with respect to individual CDS

Outline

- Overview
 - Credit Derivatives Market
 - Current Challenges
- Model Setup
 - Default Intensity Model
 - Hedging
- Time Series Analysis
- Risk Premia
 - Physical Default Dynamics
 - Types of Risk Premia
 - Decomposition of Returns
- Summary, Open Questions

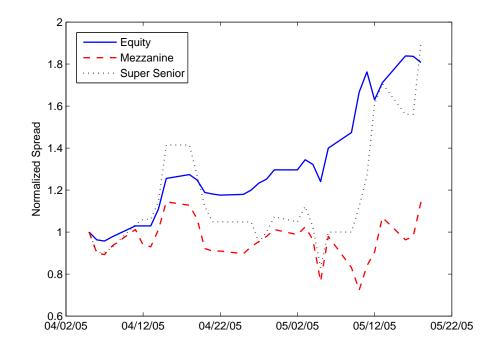
Time Series Fit - Part I

- Fixed parameters for risk-neutral default intensity dynamics:
 - Very poor fit
 - Expected, since investors's risk aversion changes over time
- Time-varying parameters:



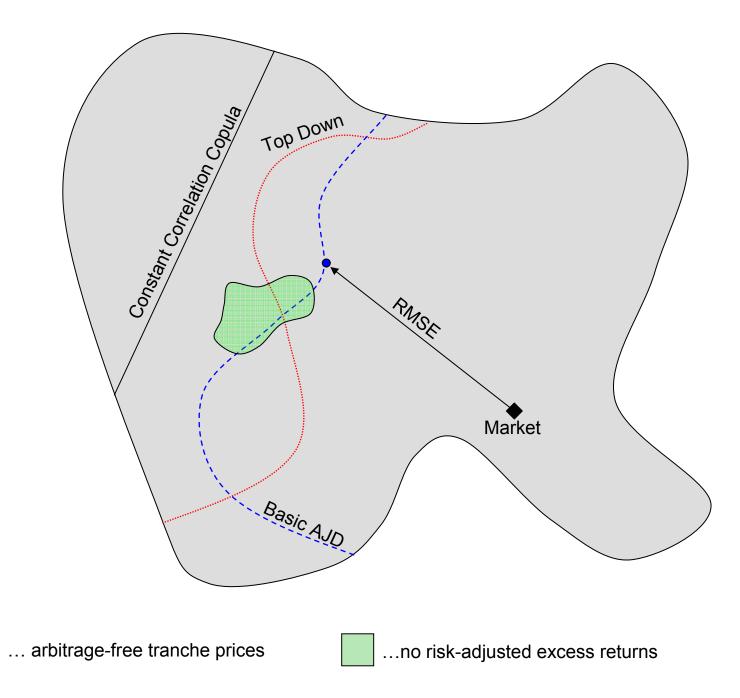
Time Series Fit - Part II

- Patterns in the tranche pricing errors:
 - General downward trend
 - Spike in May/June 2005 ("correlation crunch")



 \Rightarrow Relative tranche pricing error proxy for market efficiency?

Space of Arbitrage Free Tranche Prices



Outline

- Overview
 - Credit Derivatives Market
 - Current Challenges
- Model Setup
 - Default Intensity Model
 - Hedging
- Time Series Analysis
- Risk Premia
 - Physical Default Dynamics
 - Types of Risk Premia
 - Decomposition of Returns
- Summary, Open Questions

Joint model for $\lambda_i^{\mathbb{P}}$ and $\lambda_i^{\mathbb{Q}}$ - Part I

- Ultimate goal: pin down differences between physical (ℙ) and risk-neutral (ℚ) probability measure
- Joint model for $\lambda_i^{\mathbb{P}}$ and $\lambda_i^{\mathbb{Q}}$:

$$\lambda_{it}^{\mathbb{Q}} = X_{it} + a_i^{\mathbb{Q}} Y_t,$$

$$\lambda_{it}^{\mathbb{P}} = b_{it} X_{it} + a_i^{\mathbb{P}} Y_t,$$

where X_i and Y are basic affine jump diffusions

• Dynamics of X_i and Y differ under \mathbb{P} and \mathbb{Q} , for example:

$$dY_t = \kappa_Y^{\mathbb{Q}} \left(\theta_Y^{\mathbb{Q}} - Y_t \right) dt + \sigma_Y \sqrt{Y_t} dB_t^{\mathbb{Q},(Y)} + dJ_t^{\mathbb{Q},(Y)}$$
$$dY_t = \kappa_Y^{\mathbb{P}} \left(\theta_Y^{\mathbb{P}} - Y_t \right) dt + \sigma_Y \sqrt{Y_t} dB_t^{\mathbb{P},(Y)} + dJ_t^{\mathbb{P},(Y)}$$

Joint model for $\lambda_i^{\mathbb{P}}$ and $\lambda_i^{\mathbb{Q}}$ - Part II

- \mathbb{Q} -dynamics of $\lambda_i^{\mathbb{Q}}$ implied by market observed tranche and CDS spreads
- \mathbb{P} -dynamics of $\lambda_i^{\mathbb{P}}$ fitted to 25 years of corporate default data on 2,793 publicly traded companies:
 - Duffie, Eckner, Horel, and Saita (2006) estimated proportional hazard model

$$\lambda_{it}^{\mathbb{P}} = e^{\beta \cdot W_{it}} e^{\eta Y_t}$$

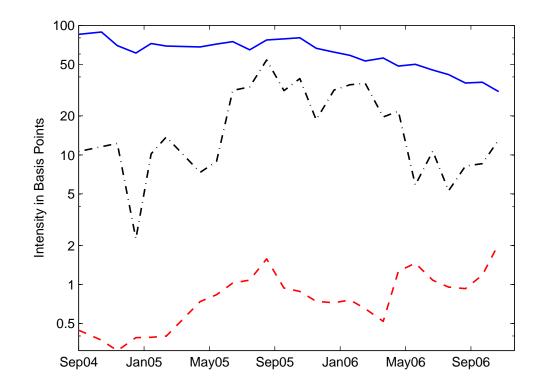
with time-varying covariate vector W_{it} and frailty variable Y following an Ornstein-Uhlenbeck process

Radon-Nikodym Derivative (under technical conditions):

$$E\left(\frac{d\mathbb{Q}}{d\mathbb{P}} \,|\, \mathcal{F}_t\right) = \left(\prod_{j=1}^{m+1} \Lambda_{jt}^{(1)}\right) \left(\prod_{j=1}^{m+1} \Lambda_{jt}^{(2)}\right) \left(\prod_{i=1}^m \Lambda_{it}^{(3)}\right)$$

Case Study: Southwest Airlines

- Market capitalization \$11.1b, Rating BBB
- Time series of 5-year CDS spread/0.6 (solid line), physical default intensity $\lambda_{it}^{\mathbb{P}}$ (dashed line), risk-neutral default intensity $\lambda_{it}^{\mathbb{Q}}$ (dash-dotted line):



Risk Premia

- Jump-to-Default (JTD) risk premium: $\eta_{it}^{JTD} = \frac{\lambda_{it}^{\mathbb{Q}}}{\lambda_{it}^{\mathbb{P}}}$
- Under conditional diversification hypothesis (Jarrow, Lando, and Yu (2005)), JTD risk premium equal to one, since JTD risk can be diversified away
- Market price of (diffusive) risk for the firm-specific factors X_i and common factor Y:

$$\eta_{it}^{MTM}\left(X_{it}\right) = \frac{\kappa^{\mathbb{Q}}\theta_{i}^{\mathbb{Q}} - \kappa^{\mathbb{P}}\theta_{i}^{\mathbb{P}}}{\sigma_{i}\sqrt{X_{it}}} + \frac{\kappa^{\mathbb{Q}} - \kappa^{\mathbb{P}}}{\sigma_{i}}\sqrt{X_{it}}$$

$$\eta_t^{MTM}\left(Y_t\right) = \frac{\kappa^{\mathbb{Q}}\theta_Y^{\mathbb{Q}} - \kappa^{\mathbb{P}}\theta_Y^{\mathbb{P}}}{\sigma_Y \sqrt{Y_t}} + \frac{\kappa^{\mathbb{Q}} - \kappa^{\mathbb{P}}}{\sigma_Y} \sqrt{Y_t}$$

• Jump risk premium:

$$\eta_t^J(Y) = \frac{l_Y^{\mathbb{Q}} \mu_Y^{\mathbb{Q}} - l_Y^{\mathbb{P}} \mu_Y^{\mathbb{P}}}{l_Y^{\mathbb{P}} \mu_Y^{\mathbb{P}}}$$

Outline

- Overview
 - Credit Derivatives Market
 - Current Challenges
- Model Setup
 - Default Intensity Model
 - Hedging
- Time Series Analysis
- Risk Premia
 - Physical Default Dynamics
 - Types of Risk Premia
 - Decomposition of Returns
- Summary, Open Questions

Research in Progress and Open Questions

Ongoing Research:

- Estimating the joint model for $\lambda_i^{\mathbb{P}}$ and $\lambda_i^{\mathbb{Q}}$
- Decompose tranche spreads into different components: pure default risk, liquidity component, various risk premia

How to:

- incorporate more than one common factor driving co-movements in default intensities
- incorporate correlation between default intensities and recovery rates
- price credit options and forward-starting CDOs in this framework

Summary

- Affine Jump Diffusion models
 - Allow the pricing of a large class of credit derivative securities via Fourier transform methods, without Monte-Carlo simulation
 - Just as fast as Copula model, since recursive ASB-step is bottleneck
- Model Fit:
 - Fit of term-structure of tranche spreads reasonably well, except for 3%-7% tranche
 - Size of tranche pricing errors might be proxy for market efficiency
- Risk Premia:
 - Jump-to-Default risk seems to be priced, i.e. $\eta_{it}^{JTD} > 1$
 - Work remains: analyze other types of risk premia

References

- Altman, E., B. Bray, A. Resti, and A. Sironi (2003). The Link between Default and Recovery Rates: Theory, Empirical Evidence and Implications. Working Paper, Stern School of Business New York University.
- Andersen, L., J. Sidenius, and S. Basu (2003). All your hedges in one basket. *Risk*, 67–72.
- Duffie, D., A. Eckner, G. Horel, and L. Saita (2006). Frailty Correlated Default. Working paper. Graduate School of Business, Stanford University.
- Duffie, D. and N. Gârleanu (2001). Risk and Valuation of Collateralized Debt Obligations. *Financial Analysts Journal 57*, 41–59.
- Duffie, D., J. Pan, and K. Singleton (2000). Transform Analysis and Asset Pricing for Affine Jump-Diffusions. *Econometrica 68*, 1343–1376.
- Duffie, D. and K. J. Singleton (1997). An Econometric Model of the Term Structure of Interest-Rate Swap Yields. *Journal of Finance 52*, 1287–1321.

- Feldhütter, P. (2007). An Empirical Investigation of an Intensity-Based Model for Pricing CDO Tranches. Working paper, Copenhagen Business School.
- Giesecke, K. and L. R. Goldberg (2005). A Top Down Approach to Multi-Name Credit.
- Jarrow, R. A., D. Lando, and F. Yu (2005). Default Risk and Diversification: Theory and Applications. *Mathematical Finance 15*, 1–26.
- Lando, D. (1998). On Cox Processess and Credit Risky Securities. *Review of Derivatives Research 2*, 99–120.
- Moody's (2000). Moody's Investor Service: Historical Default Rates of Corporate Bond Issuers, 1920-1999.
- Mortensen, A. (2006). Semi-Analytical Valuation of Basket Credit Derivatives in Intensity-Based Models. *Journal of Derivatives*, Summer 06.