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Overview - Part I

• Credit Default Swap (CDS): Protects against default of particular company

• Notional amount of outstanding credit default swaps:
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Overview - Part II

• Credit Indices: Protects against default of basket of companies

• Credit Index Tranches
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Overview - Part II

• CDX.NA.IG index:

– Underlying portfolio: 125 North-American investment-grade issuers

– Tranche structure and market prices on December 5, 2005:

Tranche % of Credit Losses Spread (bps) Up-front Payment

Equity 0% - 3% 500 40.7%

Junior Mezzanine 3% - 7% 111.9 0

Mezzanine 7% - 10% 31.3 0

Senior 10% - 15% 13.5 0

Super Senior 15% - 30% 7.4 0

Index 0%- 100% 49 0
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Overview - Part IV

• Current Challenges

– No ”Black-Scholes” model yet

– Defaults are rare events⇒ default correlations hard to estimate

– Intensity based models look quite promising, although computationally

burdensome

• Recent work in this area: Duffie and Singleton (1997), Lando (1998), Duffie

and Gârleanu (2001), Giesecke and Goldberg (2005), Mortensen (2006),

Feldhütter (2007)

• Today:

– Stochastic intensity model that is computationally quite tractable: 3-5x

speed up

– Joint model for physical (λP
i ) and risk-neutral (λQ

i ) default intensities⇒
Risk premia
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Default Time Model - Part I

• Building blocks for default intensity model: Basic Affine Jump Diffusions (AJD)

dZt = κQ
(
θQ − Zt

)
dt + σ

√
ZtdBQ

t + dJQ
t

– BQ
t Brownian motion under Q

– JQ
t an independent compound Poisson process with jump intensity lQ

exponentially distributed jumps with mean µQ

• Following quantities known explicitly (Duffie, Pan, and Singleton (2000)):

– Moment generating function: EQ
(
eq
∫

T

0
ZQ

t dt
)

– Fourier transform: EQ
(
eiq

∫
T

0
ZQ

t dt
)
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Default Time Model - Part II

• The density of
∫ T

0
Ztdt can obtained by Fourier inversion (e.g. via FFT)

• Example: Z0 = 0.01, k = 0.25, θ = 0.02, σ = 0.05, l = 0.02,

µ = 0.08, T = 5
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Default Time Model - Part III

• Factor model for default intensities

λQ
it = Xit + aiYt, (1)

as in Duffie and Gârleanu (2001), and Mortensen (2006), where Xi and Y

are independent basic AJD

• Conditional on {λQ
it : t ≥ 0}, τi is the time of the first jump of an

inhomogeneous Poisson process with intensity λQ
i

• Survival Probabilities

Q (τi > t) = EQ
[
e−

∫
t

0
λQ

i,s
ds
]

= EQ
[
e−

∫
t

0
Xi,sds

]
EQ
[
e−ai

∫
t

0
Ysds

]
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Default Time Model - Part IV

• Conditional on Ỹt :=
∫ t

0
Ysds, defaults in (0, t] are independent and default

probabilities given by

Q

(
τi ≤ t | Ỹt

)
= 1− EQ

[
e−

∫
t

0
Xi,sds

]
e−aiỸt

• The conditional distribution of number of defaults Pt(k | Ỹt) can therefore be

obtained in a simple recursive manner (Andersen, Sidenius, and Basu

(2003)): Convolution of Bernoulli R.V.s (default indicator variables)

• Unconditional distribution of number of defaults

Pt (k) =

∫
Pt(k | Ỹt)dQ

(
Ỹt

)
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Default Time Model - Part V

• Distribution of number of defaults for T = 5, implied by the model fitted to

tranche spreads on December 5, 2005
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Pricing

• Model-implied spread for CDS, credit tranches, credit index:

Value of Protection Leg = Value of Fixed Leg = PV01 × Spread

• Assuming (under Q)

– Default intensities and interest rates independent

– Recovery rates independent of default intensities

– Defaults occur on average in middle between two coupon payment dates

⇒ model-implied CDS, tranche and index spreads are an explicit function of

the portfolio loss distribution Ptk
(k) at all future coupon payment dates tk

⇒ By calculating Pt (k) for a small number of points in time t, we can price

large class of credit derivative securities
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Computational Tricks

• Spline interpolation of Fourier transform

• Restrict ASB-algorithm to values of k, such that Pt(k | Ỹt) > 10−10

• Gauss-Legendre integration for calculating unconditional portfolio loss

distribution Pt (k)

• Geometric interpolation of portfolio loss distribution Pt(k) over t

⇒ For fixed set of parameters, pricing of tranches in 1-2 seconds
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Recovery Rates - Part I

• Recovery Rate = Market value of the underlying debt as a fraction of the

notional amount at the time of default

• Average recovery rate for senior unsecured bonds 1970-1998: about 40%

• Well documented empirical features (Moody’s (2000), Altman, Bray, Resti,

and Sironi (2003)):

– Randomness: 25th and 75th percentile 30% and 65%, respectively

– Serial Correlation

– Counter-cyclical recovery rates

• Usually, assumption of constant recovery rates only innocuous in univariate

setting, where expected losses matter
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Recovery Rates - Part II

• Sufficient for pricing, knowledge of:

Qt (LT ≤ x) ∀T > t, x ∈ R+

• Rewrite:

EQ
t (Q (LT ≤ x | n Defaults)) =

m∑

n=0

Pt,T (n)Gn (x)

where Gn is the portfolio loss distribution conditional on seeing n defaults,

assumed to be independent of T

• Different choices for Gn:

– Constant RRs equal to 40%: Gn(x) = 1{x≥0.6∗n/m}

– Stochastic, but uncorrelated RRs:

G1 = 1
m (1− Uniform ({0.1, 0.4, 0.7})), Gn = G1 ∗Gn−1 for n ≥ 2
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– Stochastic and serially correlated RRs: Recovery of n-th default modeled

as (time-inhomogeneous) Markov chain with state space {0.1, 0.4, 0.7},
representing a bad, medium, good economic environment

– G25 for stochastic but independent recovery rates (dashed line), for

stochastic and serially correlated recovery rates (solid line, 80% probability

of staying in same state):
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Model Estimation - Part I

• Assume market quotes for CDS and tranche spreads subject to normally

distributed measurement noise, for example:

cp∗t,j,M = cpt,j,M + εtr
t,j,M

εtr
t,j,M ∼ N(0, σ2

tr(cp
∗
t,j,M )2)

• Likelihood function of form

log LHtr

(
ΘQ

tr

)
= ctr + dtr ·RMSE2

tr ,

for constants ctr and dtr < 0 and

RMSEtr =

√√√√√ 1

T

1

J

1

M

T∑

t=1

J∑

j=1

∑

M∈{5,7,10}

(
cpt,j,M − cp∗t,j,M

cp∗t,j,M

)2

(2)
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Model Estimation - Part II

• To ensure model identifiability impose:

1

m

m∑

i=1

ai = 1

• To get parsimonious model impose:

κQ
i = κQ

Y =: κQ, σi =
√

aiσY =:
√

aiσ, µQ
i = aiµ

Q
Y ,

ω1 =
lY

li + lY
, 1 ≤ i ≤ m

and

ω2 =
aiθY

aiθY + θi
, 1 ≤ i ≤ m

• Ensure that λQ
it

Q∼ AJD(λQ
i,0, κ

Q, θQ
i + aiθ

Q
Y ,
√

aiσY , lQi + lQY , µQ
i )
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Model - Part III

• For fixed κQ, θQ
Y + Avg(θQ

i ), σY , lQY + lQi , µQ, ω1, ω2

– Calibrate term-structure of CDS quotes by varying ai, λ
Q
i,0

– Calculate model-implied tranche spreads

– Calculate relative RMSE (2)

• By varying the parameters κQ, θQ
Y + Avg(θQ

i ), σY , lQY + lQi , µQ, ω1, ω2,

minimize relative RMSE given by (2), for example using Nelder-Mead Simplex

method
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Results: Model Fit - Part I

• Comparison of model fit to 5-year tranche spreads on December 5, 2005:

Tranche Bloomberg ModelM Markit ModelE ModelE+ ModelE++

0% - 3% 41.1% 43.2% 40.7% 40.5% 40.3% 40.6%

3% - 7% 117.5 125.9 111.9 118.5 123.7 121.2

7% - 10% 32.9 30.6 31.3 29.2 28.9 30.6

10% - 15% 15.8 21.3 13.5 14.6 14.5 14.4

15% - 30% 7.0 8.8 7.4 7.2 7.1 7.3

Rel. RMSE - 0.200 - 0.056 0.072 0.049

ModelM . . . Model by Mortensen (2006)

ModelE . . . constant recovery rates

ModelE+ . . . stochastic but uncorrelated recovery rates

ModelE++ . . . stochastic and serially correlated recovery rates
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Results: Model Fit - Part II

• Model fit on December 5, 2005 to the term-structure of tranche spreads:

Tranche Market 5yr Model 5yr Market 7yr Model 7yr Market 10yr Model 10yr

0% - 3% 40.7% 39.9% 54.8% 56.3% 61% 63%

3% - 7% 111.9 124.8 270.5 303.3 647 664

7% - 10% 31.3 30.3 53.5 57.7 129 122

10% - 15% 13.5 15.5 29.8 29.0 65 45

15% - 30% 7.4 7.2 11.6 12.4 23 19

Index 49 49 58 58 71 68
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Results: Model Parameters

Comparison of the MLE model parameters for the fit to market prices on

December 5, 2005:

kQ θ
Q
Y

+ Avg(θQ
i ) σ

Q
Y

l
Q
Y

+ l
Q
i µQ ω1 ω2 ω3

ModelE 0.010 0.077 0.087 0.008 0.223 0.35 0.09 0.014

ModelE+ 0.010 0.063 0.084 0.008 0.224 0.34 0.09 0.014

ModelE++ 0.010 0.077 0.087 0.008 0.223 0.34 0.09 0.014

ModelE . . . constant recovery rates

ModelE+ . . . stochastic but uncorrelated recovery rates

ModelE++ . . . stochastic and serially correlated recovery rates
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Applications: Hedging - Part I

• Notation:

– CDSi

(
t, T, ΘQ

)
. . . model-implied CDS spread for i-th company

– Idx
(
t, T, ΘQ

)
. . . model-implied index spread

– Trj

(
t, T, ΘQ

)
. . . model-implied spread for j-th tranche

• Calculate price sensitivities by scaling default intensities: λQ
it ← λQ

it(1 + ε)

• Tranche delta with respect to index:

∆idx
j (t) =

∂Trj

(
t, T, ΘQ

)

∂ε

∣∣
ε=0

/
∂Idx

(
t, T, ΘQ

)

∂ε

∣∣
ε=0

,

• Hedging ratio: HR
(idx)
j (t) = ∆

(idx)
j (t)× Tranche Notional

Index Notional
× Tranche PV01

Index PV01

25



Applications: Hedging - Part II

• Tranche position with $1 notional, and index position with−$HRj (t)

notional, eliminates exposure to market-wide changes in credit spreads (up to

first-order)

• Deltas ∆idx
j (t) for the 5-year CDX.NA.IG on December 5, 2005:

0%-3% 3%-7% 7%-10% 10%-15% 15%-30%

∆j,Copula 18.5 5.5 1.5 0.8 0.4

∆j,AJD 21.1 5.8 1.2 0.4 0.2

• Similar: tranche deltas with respect to individual CDS
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Time Series Fit - Part I

• Fixed parameters for risk-neutral default intensity dynamics:

– Very poor fit

– Expected, since investors’s risk aversion changes over time

• Time-varying parameters:
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Time Series Fit - Part II

• Patterns in the tranche pricing errors:

– General downward trend

– Spike in May/June 2005 (”correlation crunch”)
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Joint model for λ
P
i and λ

Q
i - Part I

• Ultimate goal: pin down differences between physical (P) and risk-neutral

(Q) probability measure

• Joint model for λP
i and λQ

i :

λQ
it = Xit+ aQ

i Yt,

λP
it = bitXit+ aP

i Yt,

where Xi and Y are basic affine jump diffusions

• Dynamics of Xi and Y differ under P and Q, for example:

dYt = κQ
Y

(
θQ

Y − Yt

)
dt + σY

√
YtdB

Q,(Y )
t + dJ

Q,(Y )
t

dYt = κP
Y

(
θP

Y − Yt

)
dt + σY

√
YtdB

P,(Y )
t + dJ

P,(Y )
t
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Joint model for λ
P
i and λ

Q
i - Part II

• Q−dynamics of λQ
i implied by market observed tranche and CDS spreads

• P−dynamics of λP
i fitted to 25 years of corporate default data on 2,793

publicly traded companies:

– Duffie, Eckner, Horel, and Saita (2006) estimated proportional hazard

model

λP
it = eβ·Wit eηYt

with time-varying covariate vector Wit and frailty variable Y following an

Ornstein-Uhlenbeck process

• Radon-Nikodym Derivative (under technical conditions):

E

(
dQ

dP
| Ft

)
=




m+1∏

j=1

Λ
(1)
jt






m+1∏

j=1

Λ
(2)
jt



(

m∏

i=1

Λ
(3)
it

)
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Case Study: Southwest Airlines

• Market capitalization $11.1b, Rating BBB

• Time series of 5-year CDS spread/0.6 (solid line), physical default intensity

λP
it (dashed line), risk-neutral default intensity λQ

it (dash-dotted line):
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Risk Premia

• Jump-to-Default (JTD) risk premium: ηJTD
it =

λQ
it

λP
it

• Under conditional diversification hypothesis (Jarrow, Lando, and Yu (2005)),

JTD risk premium equal to one, since JTD risk can be diversified away

• Market price of (diffusive) risk for the firm-specific factors Xi and common

factor Y :

ηMTM
it (Xit) =

κQθQ
i − κPθP

i

σi

√
Xit

+
κQ − κP

σi

√
Xit

ηMTM
t (Yt) =

κQθQ
Y − κPθP

Y

σY

√
Yt

+
κQ − κP

σY

√
Yt

• Jump risk premium:

ηJ
t (Y ) =

lQY µQ
Y − lPY µP

Y

lPY µP
Y
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Research in Progress and Open Questions

Ongoing Research:

• Estimating the joint model for λP
i and λQ

i

• Decompose tranche spreads into different components: pure default risk,

liquidity component, various risk premia

How to:

• incorporate more than one common factor driving co-movements in default

intensities

• incorporate correlation between default intensities and recovery rates

• price credit options and forward-starting CDOs in this framework
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Summary

• Affine Jump Diffusion models

– Allow the pricing of a large class of credit derivative securities via Fourier

transform methods, without Monte-Carlo simulation

– Just as fast as Copula model, since recursive ASB-step is bottleneck

• Model Fit:

– Fit of term-structure of tranche spreads reasonably well, except for 3%-7%

tranche

– Size of tranche pricing errors might be proxy for market efficiency

• Risk Premia:

– Jump-to-Default risk seems to be priced, i.e. ηJTD
it > 1

– Work remains: analyze other types of risk premia
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Duffie, D. and N. Gârleanu (2001). Risk and Valuation of Collateralized Debt

Obligations. Financial Analysts Journal 57, 41–59.

Duffie, D., J. Pan, and K. Singleton (2000). Transform Analysis and Asset

Pricing for Affine Jump-Diffusions. Econometrica 68, 1343–1376.

Duffie, D. and K. J. Singleton (1997). An Econometric Model of the Term

Structure of Interest-Rate Swap Yields. Journal of Finance 52, 1287–1321.

38



Feldhütter, P. (2007). An Empirical Investigation of an Intensity-Based Model for

Pricing CDO Tranches. Working paper, Copenhagen Business School.

Giesecke, K. and L. R. Goldberg (2005). A Top Down Approach to Multi-Name

Credit.

Jarrow, R. A., D. Lando, and F. Yu (2005). Default Risk and Diversification:

Theory and Applications. Mathematical Finance 15, 1–26.

Lando, D. (1998). On Cox Processess and Credit Risky Securities. Review of

Derivatives Research 2, 99–120.

Moody’s (2000). Moody’s Investor Service: Historical Default Rates of

Corporate Bond Issuers, 1920-1999.

Mortensen, A. (2006). Semi-Analytical Valuation of Basket Credit Derivatives in

Intensity-Based Models. Journal of Derivatives, Summer 06.

39


